Advertisements
Advertisements
प्रश्न
Evaluate each of the following integral:
उत्तर
\[\int_e^{e^2} \frac{1}{x\log x}dx\]
\[ = \int_e^{e^2} \frac{\frac{1}{x}}{\log x}dx\]
\[ = \left.\log\left( \log x \right)\right|_e^{e^2} ...............\left[ \int\frac{f'\left( x \right)}{f\left( x \right)}dx = \log f\left( x \right) + C \right]\]
\[ = \log\left( \log e^2 \right) - \log\left( \log e \right)\]
\[ = \log\left( 2\log e \right) - \log\left( \log e \right) \]
\[ = \log2 - \log1 ................\left( \log e = 1 \right)\]
\[ = \log2 - 0\]
\[ = \log2\]
APPEARS IN
संबंधित प्रश्न
\[\int\limits_{\pi/4}^{\pi/2} \cot x\ dx\]
Evaluate the following definite integrals:
If f(2a − x) = −f(x), prove that
If f is an integrable function, show that
Evaluate each of the following integral:
The value of \[\int\limits_0^\pi \frac{x \tan x}{\sec x + \cos x} dx\] is __________ .
If \[\int\limits_0^1 f\left( x \right) dx = 1, \int\limits_0^1 xf\left( x \right) dx = a, \int\limits_0^1 x^2 f\left( x \right) dx = a^2 , then \int\limits_0^1 \left( a - x \right)^2 f\left( x \right) dx\] equals
The derivative of \[f\left( x \right) = \int\limits_{x^2}^{x^3} \frac{1}{\log_e t} dt, \left( x > 0 \right),\] is
\[\int\limits_0^{\pi/2} \frac{1}{1 + \cot^7 x} dx\]
\[\int\limits_0^\pi \frac{x}{a^2 \cos^2 x + b^2 \sin^2 x} dx\]
\[\int\limits_0^\pi \frac{x}{1 + \cos \alpha \sin x} dx\]
\[\int\limits_2^3 \frac{\sqrt{x}}{\sqrt{5 - x} + \sqrt{x}} dx\]
\[\int\limits_0^2 \left( 2 x^2 + 3 \right) dx\]
Using second fundamental theorem, evaluate the following:
`int_1^"e" ("d"x)/(x(1 + logx)^3`
Using second fundamental theorem, evaluate the following:
`int_(-1)^1 (2x + 3)/(x^2 + 3x + 7) "d"x`
Choose the correct alternative:
`Γ(3/2)`
Verify the following:
`int (x - 1)/(2x + 3) "d"x = x - log |(2x + 3)^2| + "C"`
Verify the following:
`int (2x + 3)/(x^2 + 3x) "d"x = log|x^2 + 3x| + "C"`