Advertisements
Advertisements
प्रश्न
Using second fundamental theorem, evaluate the following:
`int_(-1)^1 (2x + 3)/(x^2 + 3x + 7) "d"x`
योग
उत्तर
`int_(-1)^1 (2x + 3)/(x^2 + 3x + 7) "d"x = int_(-1)^1 ("d"(x^2 + 3x + 7))/(x^2 + 3x + 7)`
= `[log|x^2 + 3x + 7|]_(-1)^1`
= `log|1 + 3 + 7| - log|1 - 3 + 7|`
= `log 11 - log 5`
= `log [11/5]`
shaalaa.com
Definite Integrals
क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
APPEARS IN
संबंधित प्रश्न
\[\int\limits_1^e \frac{\log x}{x} dx\]
\[\int\limits_0^{\pi/2} \frac{dx}{a \cos x + b \sin x}a, b > 0\]
\[\int\limits_0^a \sin^{- 1} \sqrt{\frac{x}{a + x}} dx\]
\[\int\limits_0^\pi x \log \sin x\ dx\]
\[\int\limits_{\pi/6}^{\pi/3} \frac{1}{1 + \sqrt{\cot}x} dx\] is
\[\int\limits_{- \pi/2}^{\pi/2} \sin\left| x \right| dx\] is equal to
\[\int\limits_{\pi/3}^{\pi/2} \frac{\sqrt{1 + \cos x}}{\left( 1 - \cos x \right)^{5/2}} dx\]
\[\int\limits_0^{15} \left[ x^2 \right] dx\]
\[\int\limits_1^3 \left( 2 x^2 + 5x \right) dx\]
\[\int\limits_0^3 \left( x^2 + 1 \right) dx\]