Advertisements
Advertisements
प्रश्न
Using second fundamental theorem, evaluate the following:
`int_1^"e" ("d"x)/(x(1 + logx)^3`
योग
उत्तर
= `int_1^"e" (1 + logx)^-3/x "d"x`
= `[("f"(x)^(-3 + 1))/(-3 + 1)]_1^"e"`
= `[(1 + log x)^-2/-2]_1^"e"`
= `- 1/2 [[1 + log x]^-2]_1^"e"`
= `- 1/2 [(1 + log "e")^-2 (1 + log 1)^-2]`
= - 1/2 [(1 + 1)^-2 - (1)^-2]`
= `- 1/2 [1/(2)^2 - 1/(1)^2]`
= `- 1/2[1/4 - 1]`
= `-1/2[(1 - 4)/4]`
= `- 1/2[(-3)/4]`
= `3/8`
shaalaa.com
Definite Integrals
क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
APPEARS IN
संबंधित प्रश्न
\[\int\limits_0^{\pi/2} \sqrt{1 + \sin x}\ dx\]
\[\int\limits_1^e \frac{e^x}{x} \left( 1 + x \log x \right) dx\]
Evaluate the following integral:
\[\int\limits_{- 3}^3 \left| x + 1 \right| dx\]
\[\int\limits_1^3 \left( 3x - 2 \right) dx\]
\[\int\limits_0^2 \left( 3 x^2 - 2 \right) dx\]
\[\int\limits_0^2 \left( x^2 + 2 \right) dx\]
The value of \[\int\limits_0^\pi \frac{x \tan x}{\sec x + \cos x} dx\] is __________ .
\[\int\limits_0^1 \left( \cos^{- 1} x \right)^2 dx\]
Evaluate the following:
`int_0^2 "f"(x) "d"x` where f(x) = `{{:(3 - 2x - x^2",", x ≤ 1),(x^2 + 2x - 3",", 1 < x ≤ 2):}`
Choose the correct alternative:
`Γ(3/2)`