Advertisements
Advertisements
प्रश्न
उत्तर
\[Let\ I = \int_1^e \frac{e^x}{x}\left( 1 + x \log x \right)\ d\ x\ . Then, \]
\[I = \int_1^e \left( \frac{e^x}{x} + e^x \log x \right) dx\]
\[ \Rightarrow I = \int_1^e \frac{e^x}{x} dx + \int_1^e e^x \log x\ d\ x\]
\[\text{Integrating first term by parts}\]
\[ \Rightarrow I = \left[ \log x e^x \right]_1^e - \int_1^e e^x \log x d x + \int_1^e e^x \log\ x\ d\ x\]
\[ \Rightarrow I = \left( \log e \right) e^e - 0\]
\[ \Rightarrow I = e^e\]
APPEARS IN
संबंधित प्रश्न
Evaluate the following integral:
Evaluate each of the following integral:
If `f` is an integrable function such that f(2a − x) = f(x), then prove that
Evaluate each of the following integral:
If \[\int\limits_0^a \frac{1}{1 + 4 x^2} dx = \frac{\pi}{8},\] then a equals
The value of the integral \[\int\limits_{- 2}^2 \left| 1 - x^2 \right| dx\] is ________ .
`int_0^(2a)f(x)dx`
\[\int\limits_0^1 \left| 2x - 1 \right| dx\]
\[\int\limits_1^3 \left| x^2 - 4 \right| dx\]
\[\int\limits_{- a}^a \frac{x e^{x^2}}{1 + x^2} dx\]
\[\int\limits_{- \pi/4}^{\pi/4} \left| \tan x \right| dx\]
\[\int\limits_0^{\pi/2} \frac{\sin^2 x}{\sin x + \cos x} dx\]
Using second fundamental theorem, evaluate the following:
`int_0^(1/4) sqrt(1 - 4) "d"x`
Using second fundamental theorem, evaluate the following:
`int_1^2 (x "d"x)/(x^2 + 1)`
Choose the correct alternative:
Γ(n) is
Choose the correct alternative:
`Γ(3/2)`
Given `int "e"^"x" (("x" - 1)/("x"^2)) "dx" = "e"^"x" "f"("x") + "c"`. Then f(x) satisfying the equation is: