Advertisements
Advertisements
प्रश्न
उत्तर
\[\int_0^\pi x \log \sin x\ d x\]
\[Let I = \int_0^\pi x \log\left( \sin x \right) d\ x . . . . . (i)\]
\[ I = \int_0^\pi \left( \pi - x \right) \log \sin\left( \pi - x \right) d x\]
\[ I = \int_0^\pi \left( \pi - x \right) \log\left( \sin x \right) dx . . . . . (ii)\]
\[\text{Adding (i) and (ii)}\]
\[2I = \pi \int_0^\pi \log \sin x\ d x\]
\[ = 2\pi \int_0^\frac{\pi}{2} \log \sin x\ d x\]
\[ I = \pi \int_0^\frac{\pi}{2} \log \sin x\ d x . . . . . (iii)\]
\[Let\ \int_0^\frac{\pi}{2} \log \sin x dx = I_2 \]
\[ I_2 = \int_0^\frac{\pi}{2} \log \sin\left( \frac{\pi}{2} - x \right) dx\]
\[ = \int_0^\frac{\pi}{2} \log \cos x dx\]
\[2 I_2 = \int_0^\frac{\pi}{2} \left( \log \sin x + \log \cos x \right) dx\]
\[ = \int_0^\frac{\pi}{2} \log\left( \sin x \cos x \right) dx\]
\[ = \int_0^\frac{\pi}{2} \log\left( \sin2x \right) dx - \int_0^\frac{\pi}{2} \log 2 dx\]
\[Let\ 2x = t\]
\[2dx = dt\]
\[when, \]
\[x = 0 \Rightarrow t = 0\]
\[x = 0 \Rightarrow t = \pi\]
\[2 I_2 = \frac{1}{2} \int_0^\pi \log \left( \sin t \right) dt - \frac{\pi}{2}\log 2\]
\[2 I_2 = \frac{2}{2} \int_0^\frac{\pi}{2} \log \left( \sin t \right) dt - \frac{\pi}{2}\log 2\]
\[2 I_2 = I_2 - \frac{\pi}{2}\log 2\]
\[ I_2 = - \frac{\pi}{2}\log 2\]
\[From \left( iii \right), \]
\[ I = \pi \int_0^\frac{\pi}{2} \log\ sinx\ dx = \pi I_2 \]
\[I = \pi\left( - \frac{\pi}{2}\log 2 \right)\]
\[I = \frac{- \pi^2 \log 2}{2}\]
APPEARS IN
संबंधित प्रश्न
Evaluate the following integral:
Write the coefficient a, b, c of which the value of the integral
The value of \[\int\limits_{- \pi/2}^{\pi/2} \left( x^3 + x \cos x + \tan^5 x + 1 \right) dx, \] is
\[\int\limits_0^{\pi/4} \sin 2x \sin 3x dx\]
\[\int\limits_0^{2\pi} \cos^7 x dx\]
\[\int\limits_{- \pi/4}^{\pi/4} \left| \tan x \right| dx\]
\[\int\limits_1^4 \left( x^2 + x \right) dx\]
Prove that `int_a^b ƒ ("x") d"x" = int_a^bƒ(a + b - "x") d"x" and "hence evaluate" int_(π/6)^(π/3) (d"x")/(1+sqrt(tan "x")`
Using second fundamental theorem, evaluate the following:
`int_1^"e" ("d"x)/(x(1 + logx)^3`
Choose the correct alternative:
If f(x) is a continuous function and a < c < b, then `int_"a"^"c" f(x) "d"x + int_"c"^"b" f(x) "d"x` is
`int x^3/(x + 1)` is equal to ______.