हिंदी

Π ∫ 0 X Log Sin X D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\limits_0^\pi x \log \sin x\ dx\]

उत्तर

\[\int_0^\pi x \log \sin x\ d x\]
\[Let I = \int_0^\pi x \log\left( \sin x \right) d\ x . . . . . (i)\]
\[ I = \int_0^\pi \left( \pi - x \right) \log \sin\left( \pi - x \right) d x\]
\[ I = \int_0^\pi \left( \pi - x \right) \log\left( \sin x \right) dx . . . . . (ii)\]
\[\text{Adding (i) and (ii)}\]
\[2I = \pi \int_0^\pi \log \sin x\ d x\]
\[ = 2\pi \int_0^\frac{\pi}{2} \log \sin x\ d x\]
\[ I = \pi \int_0^\frac{\pi}{2} \log \sin x\ d x . . . . . (iii)\]
\[Let\ \int_0^\frac{\pi}{2} \log \sin x dx = I_2 \]
\[ I_2 = \int_0^\frac{\pi}{2} \log \sin\left( \frac{\pi}{2} - x \right) dx\]
\[ = \int_0^\frac{\pi}{2} \log \cos x dx\]
\[2 I_2 = \int_0^\frac{\pi}{2} \left( \log \sin x + \log \cos x \right) dx\]
\[ = \int_0^\frac{\pi}{2} \log\left( \sin x \cos x \right) dx\]
\[ = \int_0^\frac{\pi}{2} \log\left( \sin2x \right) dx - \int_0^\frac{\pi}{2} \log 2 dx\]
\[Let\ 2x = t\]
\[2dx = dt\]
\[when, \]
\[x = 0 \Rightarrow t = 0\]
\[x = 0 \Rightarrow t = \pi\]
\[2 I_2 = \frac{1}{2} \int_0^\pi \log \left( \sin t \right) dt - \frac{\pi}{2}\log 2\]
\[2 I_2 = \frac{2}{2} \int_0^\frac{\pi}{2} \log \left( \sin t \right) dt - \frac{\pi}{2}\log 2\]
\[2 I_2 = I_2 - \frac{\pi}{2}\log 2\]
\[ I_2 = - \frac{\pi}{2}\log 2\]
\[From \left( iii \right), \]
\[ I = \pi \int_0^\frac{\pi}{2} \log\ sinx\ dx = \pi I_2 \]
\[I = \pi\left( - \frac{\pi}{2}\log 2 \right)\]
\[I = \frac{- \pi^2 \log 2}{2}\]

shaalaa.com
Definite Integrals
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 20: Definite Integrals - Exercise 20.5 [पृष्ठ ९५]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 20 Definite Integrals
Exercise 20.5 | Q 14 | पृष्ठ ९५

संबंधित प्रश्न

\[\int\limits_0^{\pi/2} \left( \sin x + \cos x \right) dx\]

\[\int\limits_{\pi/6}^{\pi/4} cosec\ x\ dx\]

\[\int\limits_0^{\pi/2} \sin x \sin 2x\ dx\]

\[\int\limits_1^3 \frac{\log x}{\left( x + 1 \right)^2} dx\]

\[\int\limits_0^1 \frac{2x + 3}{5 x^2 + 1} dx\]

\[\int\limits_0^1 \frac{1}{2 x^2 + x + 1} dx\]

\[\int\limits_1^2 \left( \frac{x - 1}{x^2} \right) e^x dx\]

\[\int\limits_1^2 \frac{x}{\left( x + 1 \right) \left( x + 2 \right)} dx\]

\[\int_0^1 x\log\left( 1 + 2x \right)dx\]

\[\int\limits_1^3 \frac{\cos \left( \log x \right)}{x} dx\]

\[\int\limits_0^1 \tan^{- 1} \left( \frac{2x}{1 - x^2} \right) dx\]

\[\int\limits_0^1 \frac{1 - x^2}{\left( 1 + x^2 \right)^2} dx\]

\[\int\limits_0^{\pi/2} \cos^5 x\ dx\]

\[\int_{- \frac{\pi}{4}}^\frac{\pi}{2} \sin x\left| \sin x \right|dx\]

 


\[\int_{- \frac{\pi}{2}}^\frac{\pi}{2} \left( 2\sin\left| x \right| + \cos\left| x \right| \right)dx\]

\[\int\limits_0^{\pi/2} \frac{\sqrt{\cot x}}{\sqrt{\cot x} + \sqrt{\tan x}} dx\]

\[\int\limits_0^\infty \frac{x}{\left( 1 + x \right)\left( 1 + x^2 \right)} dx\]

\[\int\limits_0^\pi x \sin x \cos^4 x\ dx\]

\[\int\limits_0^\pi x \sin^3 x\ dx\]

Evaluate the following integral:

\[\int_{- 1}^1 \left| xcos\pi x \right|dx\]

 


\[\int\limits_1^3 \left( 2x + 3 \right) dx\]

\[\int\limits_0^3 \left( 2 x^2 + 3x + 5 \right) dx\]

\[\int\limits_0^{\pi/2} \sin^2 x\ dx .\]

\[\int\limits_{- \pi/2}^{\pi/2} \sin^2 x\ dx .\]

\[\int\limits_{- \pi/2}^{\pi/2} \sin^3 x\ dx .\]

\[\int\limits_a^b \frac{f\left( x \right)}{f\left( x \right) + f\left( a + b - x \right)} dx .\]

Write the coefficient abc of which the value of the integral

\[\int\limits_{- 3}^3 \left( a x^2 + bx + c \right) dx\] is independent.

\[\int\limits_0^2 \left[ x \right] dx .\]

\[\int\limits_0^{\pi/2} \frac{\sin x}{\sin x + \cos x} dx\]  equals to

\[\int\limits_0^1 \frac{d}{dx}\left\{ \sin^{- 1} \left( \frac{2x}{1 + x^2} \right) \right\} dx\] is equal to

\[\int\limits_0^{\pi/2} x \sin x\ dx\]  is equal to

The value of \[\int\limits_{- \pi/2}^{\pi/2} \left( x^3 + x \cos x + \tan^5 x + 1 \right) dx, \] is 


\[\int\limits_0^{\pi/4} \sin 2x \sin 3x dx\]


\[\int\limits_0^{2\pi} \cos^7 x dx\]


\[\int\limits_{- \pi/4}^{\pi/4} \left| \tan x \right| dx\]


\[\int\limits_1^4 \left( x^2 + x \right) dx\]


Prove that `int_a^b ƒ ("x") d"x" = int_a^bƒ(a + b - "x") d"x" and "hence evaluate" int_(π/6)^(π/3) (d"x")/(1+sqrt(tan "x")`


Using second fundamental theorem, evaluate the following:

`int_1^"e" ("d"x)/(x(1 + logx)^3`


Choose the correct alternative:

If f(x) is a continuous function and a < c < b, then `int_"a"^"c" f(x)  "d"x + int_"c"^"b" f(x)  "d"x` is


`int x^3/(x + 1)` is equal to ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×