Advertisements
Advertisements
प्रश्न
Choose the correct alternative:
If f(x) is a continuous function and a < c < b, then `int_"a"^"c" f(x) "d"x + int_"c"^"b" f(x) "d"x` is
विकल्प
`int_"a"^"b" f(x) "d"x - int_"a"^"c" f(x) "d"x`
`int_"a"^"c" f(x) "d"x - int_"a"^"b" f(x) "d"x`
`int_"a"^"b" f(x) "d"x`
0
MCQ
उत्तर
`int_"a"^"b" f(x) "d"x`
shaalaa.com
Definite Integrals
क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
APPEARS IN
संबंधित प्रश्न
\[\int_0^\pi \cos x\left| \cos x \right|dx\]
\[\int_{- \frac{\pi}{2}}^\frac{\pi}{2} \left( 2\sin\left| x \right| + \cos\left| x \right| \right)dx\]
\[\int\limits_{- \pi/2}^{\pi/2} \cos^2 x\ dx .\]
\[\int\limits_0^1 \frac{2x}{1 + x^2} dx\]
\[\int\limits_0^{\pi/2} \frac{\cos x}{\left( 2 + \sin x \right)\left( 1 + \sin x \right)} dx\] equals
`int_0^1 sqrt((1 - "x")/(1 + "x")) "dx"`
Evaluate : \[\int\frac{dx}{\sin^2 x \cos^2 x}\] .
\[\int\limits_1^3 \left| x^2 - 2x \right| dx\]
Evaluate the following integrals as the limit of the sum:
`int_1^3 x "d"x`
Choose the correct alternative:
`int_0^oo x^4"e"^-x "d"x` is