Advertisements
Advertisements
प्रश्न
विकल्प
- \[\log\left( \frac{2}{3} \right)\]
- \[\log\left( \frac{3}{2} \right)\]
- \[\log\left( \frac{3}{4} \right)\]
- \[\log\left( \frac{4}{3} \right)\]
उत्तर
\[Let\, I = \int_0^\frac{\pi}{2} \frac{\cos x}{\left( 2 + \sin x \right)\left( 1 + \sin x \right)} d x\]
\[\text{Let} \sin x , \text{then} \cos x\ dx = dt\]
\[When\ x = 0, t = 0, x = \frac{\pi}{2}, t = 1\]
\[\text{Therefore the integral becomes}\]
\[I = \int_0^1 \frac{dt}{\left( 2 + t \right)\left( 1 + t \right)}\]
\[ = \int_0^1 \left[ \frac{- 1}{2 + t} + \frac{1}{1 + t} \right] dt\]
\[ = \left[ - \log\left( 2 + t \right) + \log\left( 1 + t \right) \right]_0^1 \]
\[ = \left[ \log\left( 1 + t \right) - \log\left( 2 + t \right) \right]_0^1 \]
\[ = \log2 - \log3 - \log1 + \log2\]
\[ = \log\frac{4}{3}\]
APPEARS IN
संबंधित प्रश्न
Evaluate the following integral:
Evaluate each of the following integral:
The value of the integral \[\int\limits_0^{\pi/2} \frac{\sqrt{\cos x}}{\sqrt{\cos x} + \sqrt{\sin x}} dx\] is
If \[\int\limits_0^a \frac{1}{1 + 4 x^2} dx = \frac{\pi}{8},\] then a equals
The value of \[\int\limits_0^\pi \frac{1}{5 + 3 \cos x} dx\] is
\[\int\limits_1^2 \frac{x + 3}{x\left( x + 2 \right)} dx\]
\[\int\limits_0^{\pi/4} \tan^4 x dx\]
\[\int\limits_{- \pi/2}^{\pi/2} \sin^9 x dx\]
\[\int\limits_0^{\pi/2} \frac{x \sin x \cos x}{\sin^4 x + \cos^4 x} dx\]
Using second fundamental theorem, evaluate the following:
`int_1^2 (x "d"x)/(x^2 + 1)`
Using second fundamental theorem, evaluate the following:
`int_0^1 x"e"^(x^2) "d"x`
Evaluate the following integrals as the limit of the sum:
`int_1^3 (2x + 3) "d"x`
Evaluate the following integrals as the limit of the sum:
`int_0^1 x^2 "d"x`
Evaluate `int (3"a"x)/("b"^2 + "c"^2x^2) "d"x`
Evaluate `int (x^2"d"x)/(x^4 + x^2 - 2)`