Advertisements
Advertisements
प्रश्न
\[\int\limits_0^{\pi/4} \tan^4 x dx\]
उत्तर
\[\int_0^\frac{\pi}{4} \tan^4 x d x\]
\[ = \int_0^\frac{\pi}{4} \tan^2 x\left( se c^2 x - 1 \right) d x\]
\[ = \int_0^\frac{\pi}{4} \tan^2 x se c^2 x dx - \int_0^\frac{\pi}{4} \tan^2 x dx\]
\[ = \left[ \frac{\tan^3 x}{3} \right]_0^\frac{\pi}{4} - \left[ \tan x - x \right]_0^\frac{\pi}{4} \]
\[ = \frac{1}{3} - 1 + \frac{\pi}{4}\]
\[ = \frac{\pi}{4} - \frac{2}{3}\]
APPEARS IN
संबंधित प्रश्न
If `f` is an integrable function such that f(2a − x) = f(x), then prove that
If \[\int\limits_0^a 3 x^2 dx = 8,\] write the value of a.
The value of the integral \[\int\limits_0^{\pi/2} \frac{\sqrt{\cos x}}{\sqrt{\cos x} + \sqrt{\sin x}} dx\] is
If \[I_{10} = \int\limits_0^{\pi/2} x^{10} \sin x\ dx,\] then the value of I10 + 90I8 is
\[\int\limits_0^{\pi/4} \cos^4 x \sin^3 x dx\]
\[\int\limits_1^2 \frac{x + 3}{x\left( x + 2 \right)} dx\]
\[\int\limits_1^3 \left| x^2 - 2x \right| dx\]
\[\int\limits_0^{\pi/2} \frac{1}{1 + \cot^7 x} dx\]
\[\int\limits_0^{2\pi} \cos^7 x dx\]
\[\int\limits_0^{\pi/2} \frac{\cos^2 x}{\sin x + \cos x} dx\]
Evaluate the following:
f(x) = `{{:("c"x",", 0 < x < 1),(0",", "otherwise"):}` Find 'c" if `int_0^1 "f"(x) "d"x` = 2
Evaluate the following using properties of definite integral:
`int_(- pi/4)^(pi/4) x^3 cos^3 x "d"x`
Evaluate the following:
`Γ (9/2)`
Evaluate the following:
`int_0^oo "e"^(-4x) x^4 "d"x`
Evaluate `int (x^2 + x)/(x^4 - 9) "d"x`