हिंदी

The Value of the Integral π ∫ 0 / 2 √ Cos X √ Cos X + √ Sin X D X is - Mathematics

Advertisements
Advertisements

प्रश्न

The value of the integral \[\int\limits_0^{\pi/2} \frac{\sqrt{\cos x}}{\sqrt{\cos x} + \sqrt{\sin x}} dx\]  is 

विकल्प

  • 0

  • π/2

  • π/4

  • none of these

MCQ

उत्तर

π/4

 

\[Let\ I = \int_0^\frac{\pi}{2} \frac{\sqrt{\cos x}}{\sqrt{\cos x} + \sqrt{\sin x}} d x ..............(1)\]
\[ = \int_0^\frac{\pi}{2} \frac{\sqrt{\cos\left( \frac{\pi}{2} - x \right)}}{\sqrt{\cos\left( \frac{\pi}{2} - x \right)} + \sqrt{\sin\left( \frac{\pi}{2} - x \right)}} d x \]
\[ = \int_0^\frac{\pi}{2} \frac{\sqrt{\sin x}}{\sqrt{\sin x} + \sqrt{\cos x}}dx\]
\[ = \int_0^\frac{\pi}{2} \frac{\sqrt{\sin x}}{\sqrt{\cos x} + \sqrt{\sin x}}dx ...............(2)\]
\[\text{Adding (1) and (2)}\]
\[2I = \int_0^\frac{\pi}{2} \left[ \frac{\sqrt{\cos x}}{\sqrt{\cos x} + \sqrt{\sin x}} + \frac{\sqrt{\sin x}}{\sqrt{\cos x} + \sqrt{\sin x}} \right] d x\]
\[ = \int_0^\frac{\pi}{2} dx\]
\[ = \left[ x \right]_0^\frac{\pi}{2} = \frac{\pi}{2}\]
\[Hence\ I = \frac{\pi}{4}\]

shaalaa.com
Definite Integrals
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 20: Definite Integrals - MCQ [पृष्ठ ११७]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 20 Definite Integrals
MCQ | Q 5 | पृष्ठ ११७

संबंधित प्रश्न

\[\int\limits_4^9 \frac{1}{\sqrt{x}} dx\]

\[\int\limits_{\pi/4}^{\pi/2} \cot x\ dx\]


\[\int\limits_0^1 \frac{1 - x}{1 + x} dx\]

\[\int\limits_0^{\pi/2} \cos^2 x\ dx\]

\[\int\limits_0^{\pi/2} \cos^3 x\ dx\]

\[\int\limits_0^{\pi/2} \sqrt{1 + \cos x}\ dx\]

\[\int\limits_1^2 \log\ x\ dx\]

\[\int\limits_1^3 \frac{\cos \left( \log x \right)}{x} dx\]

\[\int\limits_0^1 \frac{\sqrt{\tan^{- 1} x}}{1 + x^2} dx\]

\[\int\limits_0^1 \tan^{- 1} \left( \frac{2x}{1 - x^2} \right) dx\]

\[\int_0^\frac{\pi}{2} \frac{\cos x}{\left( \cos\frac{x}{2} + \sin\frac{x}{2} \right)^n}dx\]

Evaluate the following integral:

\[\int\limits_{- 2}^2 \left| 2x + 3 \right| dx\]

Evaluate each of the following integral:

\[\int_a^b \frac{x^\frac{1}{n}}{x^\frac{1}{n} + \left( a + b - x \right)^\frac{1}{n}}dx, n \in N, n \geq 2\]


\[\int\limits_{\pi/6}^{\pi/3} \frac{1}{1 + \sqrt{\tan x}} dx\]

\[\int\limits_0^{\pi/2} \frac{1}{1 + \tan x}\]

 


\[\int\limits_0^{\pi/2} \frac{\sin^n x}{\sin^n x + \cos^n x} dx\]

 


\[\int\limits_{- \pi/2}^{\pi/2} \log\left( \frac{2 - \sin x}{2 + \sin x} \right) dx\]

\[\int\limits_1^2 \left( x^2 - 1 \right) dx\]

\[\int\limits_0^{\pi/2} \frac{\sin^n x}{\sin^n x + \cos^n x} dx, n \in N .\]

\[\int\limits_{- \pi/2}^{\pi/2} \log\left( \frac{a - \sin \theta}{a + \sin \theta} \right) d\theta\]

\[\int\limits_0^1 \frac{2x}{1 + x^2} dx\]

\[\int\limits_0^{15} \left[ x \right] dx .\]

\[\int\limits_1^2 \log_e \left[ x \right] dx .\]

\[\int\limits_0^{\pi/2} \frac{\cos x}{\left( 2 + \sin x \right)\left( 1 + \sin x \right)} dx\] equals

\[\int\limits_0^\pi \frac{1}{a + b \cos x} dx =\]

\[\int\limits_0^{\pi/2} \frac{1}{1 + \tan x} dx\]  is equal to

\[\int\limits_0^{\pi/2} \sin\ 2x\ \log\ \tan x\ dx\]  is equal to 

`int_0^(2a)f(x)dx`


\[\int\limits_0^{\pi/2} \frac{\sin x}{\sqrt{1 + \cos x}} dx\]


\[\int\limits_0^{\pi/4} \sin 2x \sin 3x dx\]


\[\int\limits_0^1 x \left( \tan^{- 1} x \right)^2 dx\]


\[\int\limits_0^{\pi/2} \frac{1}{1 + \tan^3 x} dx\]


\[\int\limits_0^\pi \cos 2x \log \sin x dx\]


\[\int\limits_0^\pi \frac{x \tan x}{\sec x + \tan x} dx\]


Using second fundamental theorem, evaluate the following:

`int_1^"e" ("d"x)/(x(1 + logx)^3`


Evaluate the following using properties of definite integral:

`int_0^(i/2) (sin^7x)/(sin^7x + cos^7x)  "d"x`


Evaluate `int sqrt((1 + x)/(1 - x)) "d"x`, x ≠1


Find `int x^2/(x^4 + 3x^2 + 2) "d"x`


Find: `int logx/(1 + log x)^2 dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×