Advertisements
Advertisements
प्रश्न
The value of the integral \[\int\limits_0^{\pi/2} \frac{\sqrt{\cos x}}{\sqrt{\cos x} + \sqrt{\sin x}} dx\] is
विकल्प
0
π/2
π/4
none of these
उत्तर
π/4
\[Let\ I = \int_0^\frac{\pi}{2} \frac{\sqrt{\cos x}}{\sqrt{\cos x} + \sqrt{\sin x}} d x ..............(1)\]
\[ = \int_0^\frac{\pi}{2} \frac{\sqrt{\cos\left( \frac{\pi}{2} - x \right)}}{\sqrt{\cos\left( \frac{\pi}{2} - x \right)} + \sqrt{\sin\left( \frac{\pi}{2} - x \right)}} d x \]
\[ = \int_0^\frac{\pi}{2} \frac{\sqrt{\sin x}}{\sqrt{\sin x} + \sqrt{\cos x}}dx\]
\[ = \int_0^\frac{\pi}{2} \frac{\sqrt{\sin x}}{\sqrt{\cos x} + \sqrt{\sin x}}dx ...............(2)\]
\[\text{Adding (1) and (2)}\]
\[2I = \int_0^\frac{\pi}{2} \left[ \frac{\sqrt{\cos x}}{\sqrt{\cos x} + \sqrt{\sin x}} + \frac{\sqrt{\sin x}}{\sqrt{\cos x} + \sqrt{\sin x}} \right] d x\]
\[ = \int_0^\frac{\pi}{2} dx\]
\[ = \left[ x \right]_0^\frac{\pi}{2} = \frac{\pi}{2}\]
\[Hence\ I = \frac{\pi}{4}\]
APPEARS IN
संबंधित प्रश्न
\[\int\limits_{\pi/4}^{\pi/2} \cot x\ dx\]
Evaluate the following integral:
Evaluate each of the following integral:
\[\int_a^b \frac{x^\frac{1}{n}}{x^\frac{1}{n} + \left( a + b - x \right)^\frac{1}{n}}dx, n \in N, n \geq 2\]
`int_0^(2a)f(x)dx`
\[\int\limits_0^{\pi/2} \frac{\sin x}{\sqrt{1 + \cos x}} dx\]
\[\int\limits_0^{\pi/4} \sin 2x \sin 3x dx\]
\[\int\limits_0^1 x \left( \tan^{- 1} x \right)^2 dx\]
\[\int\limits_0^{\pi/2} \frac{1}{1 + \tan^3 x} dx\]
\[\int\limits_0^\pi \cos 2x \log \sin x dx\]
\[\int\limits_0^\pi \frac{x \tan x}{\sec x + \tan x} dx\]
Using second fundamental theorem, evaluate the following:
`int_1^"e" ("d"x)/(x(1 + logx)^3`
Evaluate the following using properties of definite integral:
`int_0^(i/2) (sin^7x)/(sin^7x + cos^7x) "d"x`
Evaluate `int sqrt((1 + x)/(1 - x)) "d"x`, x ≠1
Find `int x^2/(x^4 + 3x^2 + 2) "d"x`
Find: `int logx/(1 + log x)^2 dx`