Advertisements
Advertisements
प्रश्न
Evaluate `int sqrt((1 + x)/(1 - x)) "d"x`, x ≠1
उत्तर
Let I = `int sqrt((1 + x)/(1 - x)) "d"x`
= `int 1/sqrt(1 - x^2) "d"x + int (x"d"x)/sqrt(1 - x^2)`
= `sin^-1x + 1`
When I1 = `(x"d"x)/sqrt(1 - x^2)`.
Put 1 – x2 = t2
⇒ –2x dx = 2t dt.
Therefore I1 = – dt = – t + C
= `- sqrt(1 - x^2) + "C"`
Hence I = `sin^-1x - sqrt(1 - x^2) + "C"`.
APPEARS IN
संबंधित प्रश्न
\[\int\limits_{\pi/4}^{\pi/2} \cot x\ dx\]
If `f` is an integrable function such that f(2a − x) = f(x), then prove that
If f(2a − x) = −f(x), prove that
If \[\int\limits_0^1 \left( 3 x^2 + 2x + k \right) dx = 0,\] find the value of k.
If \[\int\limits_0^a 3 x^2 dx = 8,\] write the value of a.
If \[f\left( x \right) = \int_0^x t\sin tdt\], the write the value of \[f'\left( x \right)\]
The value of the integral \[\int\limits_0^\infty \frac{x}{\left( 1 + x \right)\left( 1 + x^2 \right)} dx\]
\[\int\limits_0^{\pi/4} \sin 2x \sin 3x dx\]
\[\int\limits_1^2 \frac{1}{x^2} e^{- 1/x} dx\]
\[\int\limits_0^2 \left( 2 x^2 + 3 \right) dx\]
Using second fundamental theorem, evaluate the following:
`int_0^1 "e"^(2x) "d"x`
Verify the following:
`int (2x + 3)/(x^2 + 3x) "d"x = log|x^2 + 3x| + "C"`