हिंदी

1 ∫ 0 √ X ( 1 − X ) D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\limits_0^1 \sqrt{x \left( 1 - x \right)} dx\]

उत्तर

\[Let\ I = \int_0^1 \sqrt{x\left( 1 - x \right)} d x . Then, \]
\[I = \int_0^1 \sqrt{\frac{1}{4} - \left( x - \frac{1}{2} \right)^2} dx\]
\[ \Rightarrow I = \frac{1}{2} \int_0^1 \sqrt{1 - \frac{\left( x - \frac{1}{2} \right)^2}{\frac{1}{4}}} dx\]
\[ \Rightarrow I = \frac{1}{2} \int_0^1 \sqrt{1 - \left( \frac{x - \frac{1}{2}}{\frac{1}{2}} \right)^2} dx\]
\[Let \left( \frac{x - \frac{1}{2}}{\frac{1}{2}} \right) = \sin u\]
\[ \Rightarrow 2 dx = \cos u du\]
\[ \therefore I = \frac{1}{4} \int_{- \frac{\pi}{2}}^\frac{\pi}{2} \sqrt{1 - \sin^2 u} \cos u du\]
\[ \Rightarrow I = \frac{1}{4} \int_{- \frac{\pi}{2}}^\frac{\pi}{2} \cos^2 u du\]
\[ \Rightarrow I = \frac{1}{4} \int_{- \frac{\pi}{2}}^\frac{\pi}{2} \left( \frac{\cos 2u + 1}{2} \right) du\]
\[ \Rightarrow I = \frac{1}{8} \left[ \frac{\sin 2u}{2} + u \right]_{- \frac{\pi}{2}}^\frac{\pi}{2} \]
\[ \Rightarrow I = \frac{1}{8}\left[ \frac{\pi}{2} + \frac{\pi}{2} \right]\]
\[ \Rightarrow I = \frac{\pi}{8}\]

shaalaa.com
Definite Integrals
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 20: Definite Integrals - Exercise 20.1 [पृष्ठ १७]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 20 Definite Integrals
Exercise 20.1 | Q 41 | पृष्ठ १७

संबंधित प्रश्न

\[\int\limits_{- 1}^1 \frac{1}{1 + x^2} dx\]

\[\int\limits_0^{\pi/2} \left( \sin x + \cos x \right) dx\]

\[\int\limits_0^{\pi/2} \cos^4\ x\ dx\]

 


\[\int\limits_0^{\pi/2} \sqrt{1 + \cos x}\ dx\]

\[\int\limits_0^{\pi/2} x \cos\ x\ dx\]

\[\int\limits_0^{\pi/2} x^2 \cos\ 2x\ dx\]

\[\int\limits_e^{e^2} \left\{ \frac{1}{\log x} - \frac{1}{\left( \log x \right)^2} \right\} dx\]

\[\int\limits_0^1 x \left( 1 - x \right)^5 dx\]

\[\int\limits_0^1 \left( x e^{2x} + \sin\frac{\ pix}{2} \right) dx\]

\[\int\limits_1^2 \frac{x}{\left( x + 1 \right) \left( x + 2 \right)} dx\]

\[\int\limits_0^{\pi/2} \cos^5 x\ dx\]

\[\int\limits_0^1 \left( \cos^{- 1} x \right)^2 dx\]

\[\int\limits_0^{\pi/2} \frac{\sin x \cos x}{\cos^2 x + 3 \cos x + 2} dx\]

Evaluate each of the following integral:

\[\int_a^b \frac{x^\frac{1}{n}}{x^\frac{1}{n} + \left( a + b - x \right)^\frac{1}{n}}dx, n \in N, n \geq 2\]


\[\int\limits_0^1 \log\left( \frac{1}{x} - 1 \right) dx\]

 


\[\int_0^1 | x\sin \pi x | dx\]

\[\int\limits_0^5 \left( x + 1 \right) dx\]

\[\int\limits_1^2 \left( x^2 - 1 \right) dx\]

\[\int\limits_0^{\pi/2} \sin x\ dx\]

\[\int\limits_0^{\pi/2} \cos x\ dx\]

\[\int\limits_0^3 \left( 2 x^2 + 3x + 5 \right) dx\]

\[\int\limits_0^1 e^\left\{ x \right\} dx .\]

\[\int\limits_1^2 \log_e \left[ x \right] dx .\]

\[\int\limits_0^3 \frac{3x + 1}{x^2 + 9} dx =\]

Evaluate : \[\int\frac{dx}{\sin^2 x \cos^2 x}\] .


`int_0^(2a)f(x)dx`


\[\int\limits_{- a}^a \frac{x e^{x^2}}{1 + x^2} dx\]


\[\int\limits_0^1 \cot^{- 1} \left( 1 - x + x^2 \right) dx\]


\[\int\limits_0^4 x dx\]


\[\int\limits_1^3 \left( 2 x^2 + 5x \right) dx\]


Find : `∫_a^b logx/x` dx


Evaluate the following:

`int_1^4` f(x) dx where f(x) = `{{:(4x + 3",", 1 ≤ x ≤ 2),(3x + 5",", 2 < x ≤ 4):}`


Evaluate the following using properties of definite integral:

`int_0^1 x/((1 - x)^(3/4))  "d"x`


If f(x) = `{{:(x^2"e"^(-2x)",", x ≥ 0),(0",", "otherwise"):}`, then evaluate `int_0^oo "f"(x) "d"x`


Integrate `((2"a")/sqrt(x) - "b"/x^2 + 3"c"root(3)(x^2))` w.r.t. x


Verify the following:

`int (x - 1)/(2x + 3) "d"x = x - log |(2x + 3)^2| + "C"`


Evaluate the following:

`int ((x^2 + 2))/(x + 1) "d"x`


`int (x + 3)/(x + 4)^2 "e"^x  "d"x` = ______.


The value of `int_2^3 x/(x^2 + 1)`dx is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×