Advertisements
Advertisements
प्रश्न
उत्तर
\[Let\ I = \int_0^1 \left( \cos^{- 1} x \right)^2 d x . Then, \]
\[I = \int_0^1 1 \left( \cos^{- 1} x \right)^2 d x\]
\[\text{Integrating by parts}\]
\[ \Rightarrow I = \left[ x \left( \cos^{- 1} x \right)^2 \right]_0^1 - \int_0^1 2x \cos^{- 1} x \frac{- 1}{\sqrt{1 - x^2}} dx\]
\[\text{Again, integrating second term by parts}\]
\[ \Rightarrow I = \left[ x \left( \cos^{- 1} x \right)^2 \right]_0^1 + \left\{ 2 \left[ \sqrt{1 - x^2} \cos^{- 1} x \right]_0^1 - 2 \int_0^1 \frac{1}{\sqrt{1 - x^2}}\sqrt{1 - x^2} dx \right\}\]
\[ \Rightarrow I = \left[ x \left( \cos^{- 1} x \right)^2 \right]_0^1 + 2 \left[ \sqrt{1 - x^2} \cos^{- 1} x \right]_0^1 - 2 \left[ x \right]_0^1 \]
\[ \Rightarrow I = 0 + \frac{2\pi}{2} - 2\]
\[ \Rightarrow I = \pi - 2\]
APPEARS IN
संबंधित प्रश्न
If \[\int_0^a \frac{1}{4 + x^2}dx = \frac{\pi}{8}\] , find the value of a.
If \[\left[ \cdot \right] and \left\{ \cdot \right\}\] denote respectively the greatest integer and fractional part functions respectively, evaluate the following integrals:
\[\int\limits_0^{\pi/2} \frac{1}{2 + \cos x} dx\] equals
If \[\int\limits_0^1 f\left( x \right) dx = 1, \int\limits_0^1 xf\left( x \right) dx = a, \int\limits_0^1 x^2 f\left( x \right) dx = a^2 , then \int\limits_0^1 \left( a - x \right)^2 f\left( x \right) dx\] equals
The value of the integral \[\int\limits_{- 2}^2 \left| 1 - x^2 \right| dx\] is ________ .
If f (a + b − x) = f (x), then \[\int\limits_a^b\] x f (x) dx is equal to
The value of \[\int\limits_0^{\pi/2} \log\left( \frac{4 + 3 \sin x}{4 + 3 \cos x} \right) dx\] is
\[\int\limits_0^1 \frac{1 - x}{1 + x} dx\]
\[\int\limits_0^1 \sqrt{\frac{1 - x}{1 + x}} dx\]
\[\int\limits_1^3 \left| x^2 - 4 \right| dx\]
\[\int\limits_0^{\pi/2} \frac{\cos^2 x}{\sin x + \cos x} dx\]
\[\int\limits_0^\pi \cos 2x \log \sin x dx\]
\[\int\limits_0^{\pi/2} \frac{\sin^2 x}{\sin x + \cos x} dx\]
Evaluate the following:
Γ(4)
If f(x) = `{{:(x^2"e"^(-2x)",", x ≥ 0),(0",", "otherwise"):}`, then evaluate `int_0^oo "f"(x) "d"x`
Evaluate the following integrals as the limit of the sum:
`int_1^3 x "d"x`
Evaluate the following integrals as the limit of the sum:
`int_1^3 (2x + 3) "d"x`
If `intx^3/sqrt(1 + x^2) "d"x = "a"(1 + x^2)^(3/2) + "b"sqrt(1 + x^2) + "C"`, then ______.
The value of `int_2^3 x/(x^2 + 1)`dx is ______.