हिंदी

1 ∫ 0 ( Cos − 1 X ) 2 D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\limits_0^1 \left( \cos^{- 1} x \right)^2 dx\]

उत्तर

\[Let\ I = \int_0^1 \left( \cos^{- 1} x \right)^2 d x . Then, \]
\[I = \int_0^1 1 \left( \cos^{- 1} x \right)^2 d x\]
\[\text{Integrating by parts}\]
\[ \Rightarrow I = \left[ x \left( \cos^{- 1} x \right)^2 \right]_0^1 - \int_0^1 2x \cos^{- 1} x \frac{- 1}{\sqrt{1 - x^2}} dx\]
\[\text{Again, integrating second term by parts}\]
\[ \Rightarrow I = \left[ x \left( \cos^{- 1} x \right)^2 \right]_0^1 + \left\{ 2 \left[ \sqrt{1 - x^2} \cos^{- 1} x \right]_0^1 - 2 \int_0^1 \frac{1}{\sqrt{1 - x^2}}\sqrt{1 - x^2} dx \right\}\]
\[ \Rightarrow I = \left[ x \left( \cos^{- 1} x \right)^2 \right]_0^1 + 2 \left[ \sqrt{1 - x^2} \cos^{- 1} x \right]_0^1 - 2 \left[ x \right]_0^1 \]
\[ \Rightarrow I = 0 + \frac{2\pi}{2} - 2\]
\[ \Rightarrow I = \pi - 2\]

shaalaa.com
Definite Integrals
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 20: Definite Integrals - Exercise 20.2 [पृष्ठ ४०]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 20 Definite Integrals
Exercise 20.2 | Q 51 | पृष्ठ ४०

संबंधित प्रश्न

\[\int\limits_0^{\pi/2} x^2 \cos\ 2x\ dx\]

\[\int\limits_1^2 \log\ x\ dx\]

\[\int\limits_1^2 \frac{x + 3}{x \left( x + 2 \right)} dx\]

\[\int\limits_0^1 \frac{1}{2 x^2 + x + 1} dx\]

\[\int\limits_0^a \sqrt{a^2 - x^2} dx\]

\[\int\limits_0^1 \frac{\sqrt{\tan^{- 1} x}}{1 + x^2} dx\]

\[\int\limits_0^\pi 5 \left( 5 - 4 \cos \theta \right)^{1/4} \sin \theta\ d \theta\]

\[\int\limits_0^{\pi/2} \sin 2x \tan^{- 1} \left( \sin x \right) dx\]

\[\int_{- 2}^2 x e^\left| x \right| dx\]

\[\int_0^\pi \cos x\left| \cos x \right|dx\]

\[\int\limits_{\pi/6}^{\pi/3} \frac{1}{1 + \sqrt{\tan x}} dx\]

\[\int\limits_0^2 e^x dx\]

\[\int\limits_0^2 \left( 3 x^2 - 2 \right) dx\]

\[\int\limits_1^3 \left( 2 x^2 + 5x \right) dx\]

\[\int\limits_0^{\pi/4} \tan^2 x\ dx .\]

\[\int\limits_0^4 \frac{1}{\sqrt{16 - x^2}} dx .\]

\[\int\limits_0^{\pi/2} \log \left( \frac{3 + 5 \cos x}{3 + 5 \sin x} \right) dx .\]

 


If \[\int_0^a \frac{1}{4 + x^2}dx = \frac{\pi}{8}\] , find the value of a.


If \[\left[ \cdot \right] and \left\{ \cdot \right\}\] denote respectively the greatest integer and fractional part functions respectively, evaluate the following integrals:

\[\int\limits_0^{\pi/4} \sin \left\{ x \right\} dx\]

 


\[\int\limits_0^{\pi/2} \frac{1}{2 + \cos x} dx\] equals


If \[\int\limits_0^1 f\left( x \right) dx = 1, \int\limits_0^1 xf\left( x \right) dx = a, \int\limits_0^1 x^2 f\left( x \right) dx = a^2 , then \int\limits_0^1 \left( a - x \right)^2 f\left( x \right) dx\] equals


\[\lim_{n \to \infty} \left\{ \frac{1}{2n + 1} + \frac{1}{2n + 2} + . . . + \frac{1}{2n + n} \right\}\] is equal to

The value of the integral \[\int\limits_{- 2}^2 \left| 1 - x^2 \right| dx\] is ________ .


If f (a + b − x) = f (x), then \[\int\limits_a^b\] x f (x) dx is equal to


The value of \[\int\limits_0^{\pi/2} \log\left( \frac{4 + 3 \sin x}{4 + 3 \cos x} \right) dx\] is 

 


\[\int\limits_0^1 \frac{1 - x}{1 + x} dx\]


\[\int\limits_0^1 \sqrt{\frac{1 - x}{1 + x}} dx\]


\[\int\limits_1^3 \left| x^2 - 4 \right| dx\]


\[\int\limits_0^{\pi/2} \frac{\cos^2 x}{\sin x + \cos x} dx\]


\[\int\limits_0^\pi \cos 2x \log \sin x dx\]


\[\int\limits_0^{\pi/2} \frac{\sin^2 x}{\sin x + \cos x} dx\]


Evaluate the following:

Γ(4)


If f(x) = `{{:(x^2"e"^(-2x)",", x ≥ 0),(0",", "otherwise"):}`, then evaluate `int_0^oo "f"(x) "d"x`


Evaluate the following integrals as the limit of the sum:

`int_1^3 x  "d"x`


Evaluate the following integrals as the limit of the sum:

`int_1^3 (2x + 3)  "d"x`


If `intx^3/sqrt(1 + x^2) "d"x = "a"(1 + x^2)^(3/2) + "b"sqrt(1 + x^2) + "C"`, then ______.


The value of `int_2^3 x/(x^2 + 1)`dx is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×