Advertisements
Advertisements
प्रश्न
उत्तर
\[Let\ I = \int_0^\frac{\pi}{2} \sin\ 2x\ \tan^{- 1} \left( \sin x \right) d x . Then, \]
\[I = \int_0^\frac{\pi}{2} 2 \sin x \cos x \tan^{- 1} \left( \sin x \right) d x\]
\[Let\ \sin x = t . Then, \cos\ x\ dx\ = dt\]
\[When x = 0, t = 0\ and\ x\ = \frac{\pi}{2}, t = 1\]
\[ \therefore I = 2 \int_0^1 t \tan^{- 1} t dt\]
\[ \Rightarrow I = 2 \left[ \frac{t^2}{2} \tan^{- 1} t \right]_0^1 - 2 \int_0^1 \frac{t}{1 + t^2} dt\]
\[ \Rightarrow I = 2 \left[ \frac{t^2}{2} \tan^{- 1} t \right]_0^1 - \left[ \log \left( 1 + t^2 \right) \right]_0^1 \]
\[ \Rightarrow I = \frac{2\pi}{4} - 1\]
\[ \Rightarrow I = \frac{\pi}{2} - 1\]
APPEARS IN
संबंधित प्रश्न
\[\int\limits_0^{( \pi )^{2/3}} \sqrt{x} \cos^2 x^{3/2} dx\]
Evaluate each of the following integral:
\[\int_a^b \frac{x^\frac{1}{n}}{x^\frac{1}{n} + \left( a + b - x \right)^\frac{1}{n}}dx, n \in N, n \geq 2\]
If \[\int_0^a \frac{1}{4 + x^2}dx = \frac{\pi}{8}\] , find the value of a.
The value of the integral \[\int\limits_{- 2}^2 \left| 1 - x^2 \right| dx\] is ________ .
\[\int\limits_0^{\pi/2} \frac{\sin x}{\sqrt{1 + \cos x}} dx\]
\[\int\limits_0^{\pi/4} \sin 2x \sin 3x dx\]
\[\int\limits_0^{\pi/2} \frac{\sin^2 x}{\sin x + \cos x} dx\]
\[\int\limits_{\pi/6}^{\pi/2} \frac{\ cosec x \cot x}{1 + {cosec}^2 x} dx\]
\[\int\limits_1^4 \left( x^2 + x \right) dx\]
Using second fundamental theorem, evaluate the following:
`int_(-1)^1 (2x + 3)/(x^2 + 3x + 7) "d"x`
If f(x) = `{{:(x^2"e"^(-2x)",", x ≥ 0),(0",", "otherwise"):}`, then evaluate `int_0^oo "f"(x) "d"x`
Evaluate the following integrals as the limit of the sum:
`int_1^3 x "d"x`
Choose the correct alternative:
`int_0^1 (2x + 1) "d"x` is
If x = `int_0^y "dt"/sqrt(1 + 9"t"^2)` and `("d"^2y)/("d"x^2)` = ay, then a equal to ______.