Advertisements
Advertisements
प्रश्न
उत्तर
\[Let I = \int_0^1 \left( x e^{2x} + \sin \frac{\ pix}{2} \right) d x . Then, \]
\[I = \int_0^1 x e^{2x} d x + \int_0^1 \sin \frac{\ pix}{2} dx\]
\[\text{Integrating first term by parts}\]
\[I = \left[ x \frac{e^{2x}}{2} \right]_0^1 - \int_0^1 1 \frac{e^{2x}}{2} dx + \left[ - \frac{\cos \frac{\ pix}{2}}{\frac{\pi}{2}} \right]_0^1 \]
\[ \Rightarrow I = \left[ x \frac{e^{2x}}{2} \right]_0^1 - \left[ \frac{e^{2x}}{4} \right]_0^1 - \frac{2}{\pi} \left[ \cos \frac{\ pix}{2} \right]_0^1 \]
\[ \Rightarrow I = \frac{e^2}{2} - \frac{e^2}{4} + \frac{1}{4} + \frac{2}{\pi}\]
\[ \Rightarrow I = \frac{e^2}{4} + \frac{1}{4} + \frac{2}{\pi}\]
APPEARS IN
संबंधित प्रश्न
Evaluate the following integral:
Evaluate each of the following integral:
\[\int\limits_0^\pi \frac{1}{1 + \sin x} dx\] equals
\[\int\limits_0^\infty \frac{1}{1 + e^x} dx\] equals
\[\int_0^\frac{\pi^2}{4} \frac{\sin\sqrt{x}}{\sqrt{x}} dx\] equals
The value of \[\int\limits_0^\pi \frac{1}{5 + 3 \cos x} dx\] is
The value of \[\int\limits_0^{\pi/2} \log\left( \frac{4 + 3 \sin x}{4 + 3 \cos x} \right) dx\] is
\[\int\limits_0^{\pi/4} \cos^4 x \sin^3 x dx\]
\[\int\limits_0^1 \log\left( 1 + x \right) dx\]
\[\int\limits_0^{\pi/4} e^x \sin x dx\]
\[\int\limits_0^{\pi/4} \tan^4 x dx\]
\[\int\limits_0^1 \left| \sin 2\pi x \right| dx\]
\[\int\limits_{- 1/2}^{1/2} \cos x \log\left( \frac{1 + x}{1 - x} \right) dx\]
\[\int\limits_0^\pi \frac{x}{a^2 \cos^2 x + b^2 \sin^2 x} dx\]
\[\int\limits_0^\pi \cos 2x \log \sin x dx\]
Evaluate the following using properties of definite integral:
`int_(- pi/2)^(pi/2) sin^2theta "d"theta`
Choose the correct alternative:
`int_0^oo "e"^(-2x) "d"x` is
Choose the correct alternative:
The value of `int_(- pi/2)^(pi/2) cos x "d"x` is
Choose the correct alternative:
Γ(1) is
Evaluate `int sqrt((1 + x)/(1 - x)) "d"x`, x ≠1
Find `int sqrt(10 - 4x + 4x^2) "d"x`
Verify the following:
`int (2x + 3)/(x^2 + 3x) "d"x = log|x^2 + 3x| + "C"`
`int "e"^x ((1 - x)/(1 + x^2))^2 "d"x` is equal to ______.
`int x^9/(4x^2 + 1)^6 "d"x` is equal to ______.