Advertisements
Advertisements
प्रश्न
Choose the correct alternative:
`int_0^oo "e"^(-2x) "d"x` is
विकल्प
0
1
2
`1/2`
MCQ
उत्तर
`1/2`
shaalaa.com
Definite Integrals
क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
APPEARS IN
संबंधित प्रश्न
\[\int\limits_0^{\pi/2} \cos^3 x\ dx\]
\[\int\limits_1^2 \left( \frac{x - 1}{x^2} \right) e^x dx\]
\[\int\limits_0^1 \tan^{- 1} \left( \frac{2x}{1 - x^2} \right) dx\]
If \[\int_0^a \frac{1}{4 + x^2}dx = \frac{\pi}{8}\] , find the value of a.
The value of \[\int\limits_0^{2\pi} \sqrt{1 + \sin\frac{x}{2}}dx\] is
Evaluate : \[\int\limits_0^{2\pi} \cos^5 x dx\] .
`int_0^(2a)f(x)dx`
\[\int\limits_1^2 \frac{x + 3}{x\left( x + 2 \right)} dx\]
\[\int\limits_0^{\pi/2} \frac{dx}{4 \cos x + 2 \sin x}dx\]
`int x^3/(x + 1)` is equal to ______.