Advertisements
Advertisements
प्रश्न
उत्तर
\[Let\ I = \int_1^2 \left( \frac{x - 1}{x^2} \right) e^x\ d\ x . Then, \]
\[I = \int_1^2 \left( \frac{e^x}{x} - \frac{e^x}{x^2} \right) dx\]
\[ \Rightarrow I = \int_1^2 \frac{e^x}{x} dx - \int_1^2 \frac{e^x}{x^2} dx\]
\[\text{Integrating first term by parts}\]
\[I = \left\{ \left[ \frac{e^x}{x} \right]_1^2 - \int_1^2 \frac{- 1}{x^2} e^x dx \right\} - \int_1^2 \frac{e^x}{x^2} dx\]
\[ \Rightarrow I = \left[ \frac{e^x}{x} \right]_1^2 + \int_1^2 \frac{e^x}{x^2} dx - \int_1^2 \frac{e^x}{x^2} dx\]
\[ \Rightarrow I = \left[ \frac{e^x}{x} \right]_1^2 \]
\[ \Rightarrow I = \frac{e^2}{2} - e\]
APPEARS IN
संबंधित प्रश्न
Evaluate the following integral:
Evaluate each of the following integral:
The value of the integral \[\int\limits_0^{\pi/2} \frac{\sqrt{\cos x}}{\sqrt{\cos x} + \sqrt{\sin x}} dx\] is
If \[\int\limits_0^a \frac{1}{1 + 4 x^2} dx = \frac{\pi}{8},\] then a equals
\[\int\limits_0^{\pi/2} \frac{\sin^2 x}{\left( 1 + \cos x \right)^2} dx\]
\[\int\limits_0^\infty \frac{x}{\left( 1 + x \right)\left( 1 + x^2 \right)} dx\]
\[\int\limits_0^{\pi/4} \tan^4 x dx\]
\[\int\limits_0^{\pi/2} \frac{1}{1 + \cot^7 x} dx\]
\[\int\limits_0^\pi x \sin x \cos^4 x dx\]
\[\int\limits_0^{\pi/2} \frac{\cos^2 x}{\sin x + \cos x} dx\]
\[\int\limits_0^{\pi/2} \frac{x}{\sin^2 x + \cos^2 x} dx\]
Evaluate the following:
`int_1^4` f(x) dx where f(x) = `{{:(4x + 3",", 1 ≤ x ≤ 2),(3x + 5",", 2 < x ≤ 4):}`
Evaluate the following using properties of definite integral:
`int_(- pi/4)^(pi/4) x^3 cos^3 x "d"x`
Evaluate the following:
Γ(4)
If f(x) = `{{:(x^2"e"^(-2x)",", x ≥ 0),(0",", "otherwise"):}`, then evaluate `int_0^oo "f"(x) "d"x`
Evaluate the following integrals as the limit of the sum:
`int_1^3 x "d"x`
Choose the correct alternative:
The value of `int_(- pi/2)^(pi/2) cos x "d"x` is
Choose the correct alternative:
If n > 0, then Γ(n) is
`int (cos2x - cos 2theta)/(cosx - costheta) "d"x` is equal to ______.
If `intx^3/sqrt(1 + x^2) "d"x = "a"(1 + x^2)^(3/2) + "b"sqrt(1 + x^2) + "C"`, then ______.