Advertisements
Advertisements
प्रश्न
If f(x) = `{{:(x^2"e"^(-2x)",", x ≥ 0),(0",", "otherwise"):}`, then evaluate `int_0^oo "f"(x) "d"x`
योग
उत्तर
`int_0^oo x^2 "e"^(-2x) "d"x = int_0^oo x^"n""e"^(-"a"x) "d"x`
= `("n"!)/("a"^("n" + 1))`
Where n = 2
a = 2
So `int_0^oo "f"(x) "d"x = (2!)/2^3`
= `2/8`
= `1/4`
shaalaa.com
Definite Integrals
क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
APPEARS IN
संबंधित प्रश्न
\[\int\limits_0^a \sin^{- 1} \sqrt{\frac{x}{a + x}} dx\]
If f (x) is a continuous function defined on [0, 2a]. Then, prove that
\[\int\limits_0^{2a} f\left( x \right) dx = \int\limits_0^a \left\{ f\left( x \right) + f\left( 2a - x \right) \right\} dx\]
\[\int\limits_0^3 \left( x + 4 \right) dx\]
\[\int\limits_1^4 \left( x^2 - x \right) dx\]
\[\int\limits_0^2 \left( x^2 + x \right) dx\]
\[\int\limits_0^1 \frac{1}{1 + x^2} dx\]
If \[\int\limits_0^a \frac{1}{1 + 4 x^2} dx = \frac{\pi}{8},\] then a equals
Evaluate : \[\int\frac{dx}{\sin^2 x \cos^2 x}\] .
\[\int\limits_1^2 \frac{1}{x^2} e^{- 1/x} dx\]
Prove that `int_a^b ƒ ("x") d"x" = int_a^bƒ(a + b - "x") d"x" and "hence evaluate" int_(π/6)^(π/3) (d"x")/(1+sqrt(tan "x")`