हिंदी

A ∫ 0 Sin − 1 √ X a + X D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\limits_0^a \sin^{- 1} \sqrt{\frac{x}{a + x}} dx\]
योग

उत्तर

\[Let\, I = \int\limits_0^a \sin^{- 1} \sqrt{\frac{x}{a + x}} dx\]

\[Let, x = a \tan^2 \theta \Rightarrow \theta = \tan^{- 1} \sqrt{\frac{x}{a}}\]

\[When, x \to x ; \theta \to 0\ and\ x\ \to a ; \theta \to \frac{\pi}{4}\]

\[and\ dx\ = 2a \tan\theta se c^2 \theta d\theta\]

\[Then, \]

\[I = \int\limits_0^\frac{\pi}{4} \sin^{- 1} \sqrt{\frac{a \tan^2 \theta}{a + a \tan^2 \theta}} 2a \tan\theta se c^2 \theta\ d\theta\]

\[ \Rightarrow I = {2a \int}^\frac{\pi}{4}_0 \sin^{- 1} \left( \sin\theta \right) \tan\theta se c^2 \theta d\theta\]

\[ \Rightarrow I = {2a \int}^\frac{\pi}{4}_0 \theta \tan\theta se c^2 \theta d\theta\]

\[Let, \tan \theta = t \Rightarrow \theta = \tan^{- 1} t\]

\[ \Rightarrow se c^2 \theta d\theta = dt\]

\[when, \theta \to 0 ; t \to 0 and \theta \to \frac{\pi}{4} ; t \to 1\]

\[Then, I = 2a \int_0^1 \tan^{- 1} t\ t \ dt\]

\[ = 2a \int_0^1 \tan^{- 1} t\ t\ dt\]

\[ = 2a \left[ \tan^{- 1} t \frac{t^2}{2} \right]_0^1 - \frac{2a}{2} \int_0^1 \frac{t^2}{1 + t^2} dt\]

\[ = 2a\left[ \frac{\pi}{4} \times \frac{1}{2} - 0 \right] - a \int_0^1 \left[ 1 - \frac{1}{1 + t^2} \right] dt\]

\[ = 2a\left[ \frac{\pi}{8} \right] - a \left[ t - \tan^{- 1} t \right]_0^1 \]

\[ = \frac{\pi a}{4} - a\left[ 1 - \frac{\pi}{4} \right]\]

\[ = \frac{\pi a}{4} - a + \frac{\pi a}{4}\]

\[ = \frac{\pi a}{2} - a\]

\[ = a\left( \frac{\pi}{2} - 1 \right)\]

shaalaa.com
Definite Integrals
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 20: Definite Integrals - Exercise 20.2 [पृष्ठ ४०]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 20 Definite Integrals
Exercise 20.2 | Q 52 | पृष्ठ ४०

संबंधित प्रश्न

\[\int\limits_0^1 \frac{1}{1 + x^2} dx\]

\[\int\limits_0^{\pi/2} \frac{1}{5 \cos x + 3 \sin x} dx\]

\[\int\limits_1^3 \frac{\cos \left( \log x \right)}{x} dx\]

\[\int\limits_0^{\pi/2} \sqrt{\sin \phi} \cos^5 \phi\ d\phi\]

 


\[\int\limits_0^1 \frac{\sqrt{\tan^{- 1} x}}{1 + x^2} dx\]

\[\int\limits_0^1 x \tan^{- 1} x\ dx\]

\[\int\limits_0^1 \frac{1 - x^2}{x^4 + x^2 + 1} dx\]

\[\int\limits_0^{\pi/2} \sin 2x \tan^{- 1} \left( \sin x \right) dx\]

\[\int\limits_{\pi/3}^{\pi/2} \frac{\sqrt{1 + \cos x}}{\left( 1 - \cos x \right)^{3/2}} dx\]

\[\int_0^\frac{\pi}{2} \frac{\tan x}{1 + m^2 \tan^2 x}dx\]

\[\int\limits_0^5 \left( x + 1 \right) dx\]

\[\int\limits_0^1 \left( 3 x^2 + 5x \right) dx\]

\[\int\limits_a^b \cos\ x\ dx\]

\[\int\limits_0^{\pi/2} \cos x\ dx\]

\[\int\limits_2^3 x^2 dx\]

Evaluate each of the following integral:

\[\int_0^\frac{\pi}{4} \sin2xdx\]

Evaluate each of the following integral:

\[\int_0^\frac{\pi}{2} e^x \left( \sin x - \cos x \right)dx\]

 


\[\int\limits_0^1 \left\{ x \right\} dx,\] where {x} denotes the fractional part of x.  

 

If \[\left[ \cdot \right] and \left\{ \cdot \right\}\] denote respectively the greatest integer and fractional part functions respectively, evaluate the following integrals:

\[\int\limits_0^{\pi/4} \sin \left\{ x \right\} dx\]

 


\[\int\limits_1^e \log x\ dx =\]

The value of \[\int\limits_0^{\pi/2} \cos x\ e^{\sin x}\ dx\] is

 


The value of the integral \[\int\limits_{- 2}^2 \left| 1 - x^2 \right| dx\] is ________ .


\[\int\limits_0^{\pi/2} \frac{\sin x}{\sin x + \cos x} dx\]  equals to

\[\int\limits_0^4 x\sqrt{4 - x} dx\]


\[\int\limits_0^{\pi/4} \sin 2x \sin 3x dx\]


Evaluate the following integrals :-

\[\int_2^4 \frac{x^2 + x}{\sqrt{2x + 1}}dx\]


\[\int\limits_{- \pi/2}^{\pi/2} \sin^9 x dx\]


\[\int\limits_0^\pi \frac{x}{a^2 - \cos^2 x} dx, a > 1\]


\[\int\limits_0^{\pi/2} \frac{x}{\sin^2 x + \cos^2 x} dx\]


\[\int\limits_{- \pi}^\pi x^{10} \sin^7 x dx\]


\[\int\limits_0^2 \left( 2 x^2 + 3 \right) dx\]


\[\int\limits_0^3 \left( x^2 + 1 \right) dx\]


Using second fundamental theorem, evaluate the following:

`int_0^(1/4) sqrt(1 - 4)  "d"x`


Evaluate the following using properties of definite integral:

`int_0^1 log (1/x - 1)  "d"x`


Choose the correct alternative:

`Γ(3/2)`


Integrate `((2"a")/sqrt(x) - "b"/x^2 + 3"c"root(3)(x^2))` w.r.t. x


Evaluate the following:

`int ((x^2 + 2))/(x + 1) "d"x`


`int x^3/(x + 1)` is equal to ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×