Advertisements
Advertisements
प्रश्न
उत्तर
\[Let\, I = \int\limits_0^a \sin^{- 1} \sqrt{\frac{x}{a + x}} dx\]
\[Let, x = a \tan^2 \theta \Rightarrow \theta = \tan^{- 1} \sqrt{\frac{x}{a}}\]
\[When, x \to x ; \theta \to 0\ and\ x\ \to a ; \theta \to \frac{\pi}{4}\]
\[and\ dx\ = 2a \tan\theta se c^2 \theta d\theta\]
\[Then, \]
\[I = \int\limits_0^\frac{\pi}{4} \sin^{- 1} \sqrt{\frac{a \tan^2 \theta}{a + a \tan^2 \theta}} 2a \tan\theta se c^2 \theta\ d\theta\]
\[ \Rightarrow I = {2a \int}^\frac{\pi}{4}_0 \sin^{- 1} \left( \sin\theta \right) \tan\theta se c^2 \theta d\theta\]
\[ \Rightarrow I = {2a \int}^\frac{\pi}{4}_0 \theta \tan\theta se c^2 \theta d\theta\]
\[Let, \tan \theta = t \Rightarrow \theta = \tan^{- 1} t\]
\[ \Rightarrow se c^2 \theta d\theta = dt\]
\[when, \theta \to 0 ; t \to 0 and \theta \to \frac{\pi}{4} ; t \to 1\]
\[Then, I = 2a \int_0^1 \tan^{- 1} t\ t \ dt\]
\[ = 2a \int_0^1 \tan^{- 1} t\ t\ dt\]
\[ = 2a \left[ \tan^{- 1} t \frac{t^2}{2} \right]_0^1 - \frac{2a}{2} \int_0^1 \frac{t^2}{1 + t^2} dt\]
\[ = 2a\left[ \frac{\pi}{4} \times \frac{1}{2} - 0 \right] - a \int_0^1 \left[ 1 - \frac{1}{1 + t^2} \right] dt\]
\[ = 2a\left[ \frac{\pi}{8} \right] - a \left[ t - \tan^{- 1} t \right]_0^1 \]
\[ = \frac{\pi a}{4} - a\left[ 1 - \frac{\pi}{4} \right]\]
\[ = \frac{\pi a}{4} - a + \frac{\pi a}{4}\]
\[ = \frac{\pi a}{2} - a\]
\[ = a\left( \frac{\pi}{2} - 1 \right)\]
APPEARS IN
संबंधित प्रश्न
Evaluate each of the following integral:
Evaluate each of the following integral:
\[\int\limits_0^1 \left\{ x \right\} dx,\] where {x} denotes the fractional part of x.
If \[\left[ \cdot \right] and \left\{ \cdot \right\}\] denote respectively the greatest integer and fractional part functions respectively, evaluate the following integrals:
The value of \[\int\limits_0^{\pi/2} \cos x\ e^{\sin x}\ dx\] is
The value of the integral \[\int\limits_{- 2}^2 \left| 1 - x^2 \right| dx\] is ________ .
\[\int\limits_0^4 x\sqrt{4 - x} dx\]
\[\int\limits_0^{\pi/4} \sin 2x \sin 3x dx\]
Evaluate the following integrals :-
\[\int_2^4 \frac{x^2 + x}{\sqrt{2x + 1}}dx\]
\[\int\limits_{- \pi/2}^{\pi/2} \sin^9 x dx\]
\[\int\limits_0^\pi \frac{x}{a^2 - \cos^2 x} dx, a > 1\]
\[\int\limits_0^{\pi/2} \frac{x}{\sin^2 x + \cos^2 x} dx\]
\[\int\limits_{- \pi}^\pi x^{10} \sin^7 x dx\]
\[\int\limits_0^2 \left( 2 x^2 + 3 \right) dx\]
\[\int\limits_0^3 \left( x^2 + 1 \right) dx\]
Using second fundamental theorem, evaluate the following:
`int_0^(1/4) sqrt(1 - 4) "d"x`
Evaluate the following using properties of definite integral:
`int_0^1 log (1/x - 1) "d"x`
Choose the correct alternative:
`Γ(3/2)`
Integrate `((2"a")/sqrt(x) - "b"/x^2 + 3"c"root(3)(x^2))` w.r.t. x
Evaluate the following:
`int ((x^2 + 2))/(x + 1) "d"x`
`int x^3/(x + 1)` is equal to ______.