Advertisements
Advertisements
प्रश्न
Evaluate the following integrals :-
\[\int_2^4 \frac{x^2 + x}{\sqrt{2x + 1}}dx\]
उत्तर
Let \[I=\int_2^4 \frac{x^2 + x}{\sqrt{2x + 1}}dx\]
Put 2x + 1 = z2
\[\Rightarrow 2dx = 2zdz\]
\[ \Rightarrow dx = zdz\]
When
\[x \to 2, z \to \sqrt{5}\]
When
\[x \to 4, z \to 3\]
\[\therefore I = \int_\sqrt{5}^3 \frac{\left( \frac{z^2 - 1}{2} \right)^2 + \frac{z^2 - 1}{2}}{z} \times zdz\]
\[ \Rightarrow I = \int_\sqrt{5}^3 \frac{z^4 - 2 z^2 + 1 + 2 z^2 - 2}{4}dz\]
\[ \Rightarrow I = \frac{1}{4} \int_\sqrt{5}^3 \left( z^4 - 1 \right)dz\]
\[ \Rightarrow I = \left.\frac{1}{4} \times \left( \frac{z^5}{5} - z \right)\right|_\sqrt{5}^3\]
\[\Rightarrow I = \frac{1}{4}\left[ \left( \frac{243}{5} - 3 \right) - \left( \frac{25\sqrt{5}}{5} - \sqrt{5} \right) \right]\]
\[ \Rightarrow I = \frac{1}{4} \times \frac{228}{5} - \frac{1}{4} \times 4\sqrt{5}\]
\[ \Rightarrow I = \frac{57}{5} - \sqrt{5}\]
APPEARS IN
संबंधित प्रश्न
\[\int\limits_0^{( \pi )^{2/3}} \sqrt{x} \cos^2 x^{3/2} dx\]
Evaluate the following integral:
If \[\int\limits_0^a \frac{1}{1 + 4 x^2} dx = \frac{\pi}{8},\] then a equals
The value of \[\int\limits_0^\pi \frac{1}{5 + 3 \cos x} dx\] is
Evaluate : \[\int e^{2x} \cdot \sin \left( 3x + 1 \right) dx\] .
\[\int\limits_0^1 \cos^{- 1} x dx\]
\[\int\limits_0^1 \left| \sin 2\pi x \right| dx\]
\[\int\limits_0^\pi \frac{x \sin x}{1 + \cos^2 x} dx\]
\[\int\limits_0^\pi x \sin x \cos^4 x dx\]
\[\int\limits_0^{\pi/2} \frac{x \sin x \cos x}{\sin^4 x + \cos^4 x} dx\]
Evaluate the following using properties of definite integral:
`int_(- pi/2)^(pi/2) sin^2theta "d"theta`
Evaluate the following integrals as the limit of the sum:
`int_0^1 x^2 "d"x`
Choose the correct alternative:
`Γ(3/2)`
Evaluate `int (x^2 + x)/(x^4 - 9) "d"x`
`int x^3/(x + 1)` is equal to ______.