हिंदी

Evaluate the Following Integrals :- ∫ 4 2 X 2 + X √ 2 X + 1 D X - Mathematics

Advertisements
Advertisements

प्रश्न

Evaluate the following integrals :-

\[\int_2^4 \frac{x^2 + x}{\sqrt{2x + 1}}dx\]

योग

उत्तर

Let \[I=\int_2^4 \frac{x^2 + x}{\sqrt{2x + 1}}dx\]

Put 2x + 1 = z2

\[\Rightarrow 2dx = 2zdz\]

\[ \Rightarrow dx = zdz\]

When

\[x \to 2, z \to \sqrt{5}\]

When

\[x \to 4, z \to 3\]

\[\therefore I = \int_\sqrt{5}^3 \frac{\left( \frac{z^2 - 1}{2} \right)^2 + \frac{z^2 - 1}{2}}{z} \times zdz\]

\[ \Rightarrow I = \int_\sqrt{5}^3 \frac{z^4 - 2 z^2 + 1 + 2 z^2 - 2}{4}dz\]

\[ \Rightarrow I = \frac{1}{4} \int_\sqrt{5}^3 \left( z^4 - 1 \right)dz\]

\[ \Rightarrow I = \left.\frac{1}{4} \times \left( \frac{z^5}{5} - z \right)\right|_\sqrt{5}^3\]

\[\Rightarrow I = \frac{1}{4}\left[ \left( \frac{243}{5} - 3 \right) - \left( \frac{25\sqrt{5}}{5} - \sqrt{5} \right) \right]\]

\[ \Rightarrow I = \frac{1}{4} \times \frac{228}{5} - \frac{1}{4} \times 4\sqrt{5}\]

\[ \Rightarrow I = \frac{57}{5} - \sqrt{5}\]

shaalaa.com
Definite Integrals
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 20: Definite Integrals - Revision Exercise [पृष्ठ १२१]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 20 Definite Integrals
Revision Exercise | Q 23 | पृष्ठ १२१

संबंधित प्रश्न

\[\int\limits_4^9 \frac{1}{\sqrt{x}} dx\]

\[\int\limits_{- 2}^3 \frac{1}{x + 7} dx\]

\[\int\limits_0^{\pi/2} \sin x \sin 2x\ dx\]

\[\int\limits_0^{\pi/2} x \cos\ x\ dx\]

\[\int_0^{2\pi} \sqrt{1 + \sin\frac{x}{2}}dx\]

\[\int\limits_0^a \frac{x}{\sqrt{a^2 + x^2}} dx\]

\[\int\limits_0^1 \frac{e^x}{1 + e^{2x}} dx\]

\[\int\limits_0^a \sqrt{a^2 - x^2} dx\]

\[\int\limits_0^{\pi/2} \frac{1}{5 + 4 \sin x} dx\]

\[\int\limits_0^1 x \tan^{- 1} x\ dx\]

\[\int\limits_0^{( \pi )^{2/3}} \sqrt{x} \cos^2 x^{3/2} dx\]


\[\int\limits_1^2 \frac{1}{x \left( 1 + \log x \right)^2} dx\]

Evaluate the following integral:

\[\int\limits_{- 2}^2 \left| 2x + 3 \right| dx\]

\[\int\limits_0^1 \frac{\log\left( 1 + x \right)}{1 + x^2} dx\]

 


\[\int\limits_0^\pi x \sin^3 x\ dx\]

\[\int\limits_0^\pi \frac{x \sin x}{1 + \sin x} dx\]

\[\int\limits_0^2 \left( x^2 + 1 \right) dx\]

\[\int\limits_0^{\pi/2} \sin x\ dx\]

\[\int\limits_1^4 \left( 3 x^2 + 2x \right) dx\]

\[\int\limits_a^b x\ dx\]

\[\int\limits_{- \pi/2}^{\pi/2} \cos^2 x\ dx .\]

\[\int\limits_{- \pi/2}^{\pi/2} \sin^3 x\ dx .\]

\[\int\limits_{- \pi/2}^{\pi/2} \log\left( \frac{a - \sin \theta}{a + \sin \theta} \right) d\theta\]

\[\int\limits_0^1 2^{x - \left[ x \right]} dx\]

\[\int\limits_1^\sqrt{3} \frac{1}{1 + x^2} dx\]  is equal to ______.

\[\int\limits_{- \pi/2}^{\pi/2} \sin\left| x \right| dx\]  is equal to

If \[\int\limits_0^a \frac{1}{1 + 4 x^2} dx = \frac{\pi}{8},\] then a equals

 


\[\int\limits_0^{\pi/2} \frac{\sin x}{\sin x + \cos x} dx\]  equals to

The value of \[\int\limits_0^\pi \frac{1}{5 + 3 \cos x} dx\] is

 


Evaluate : \[\int e^{2x} \cdot \sin \left( 3x + 1 \right) dx\] .


\[\int\limits_0^1 \cos^{- 1} x dx\]


\[\int\limits_0^1 \left| \sin 2\pi x \right| dx\]


\[\int\limits_0^\pi \frac{x \sin x}{1 + \cos^2 x} dx\]


\[\int\limits_0^\pi x \sin x \cos^4 x dx\]


\[\int\limits_0^{\pi/2} \frac{x \sin x \cos x}{\sin^4 x + \cos^4 x} dx\]


Evaluate the following using properties of definite integral:

`int_(- pi/2)^(pi/2) sin^2theta  "d"theta`


Evaluate the following integrals as the limit of the sum:

`int_0^1 x^2  "d"x`


Choose the correct alternative:

`Γ(3/2)`


Evaluate `int (x^2 + x)/(x^4 - 9) "d"x`


`int x^3/(x + 1)` is equal to ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×