Advertisements
Advertisements
प्रश्न
विकल्प
- \[\frac{\pi}{12}\]
- \[\frac{\pi}{6}\]
- \[\frac{\pi}{4}\]
- \[\frac{\pi}{3}\]
\[\frac{\pi}{2}\]
\[\frac{2\pi}{3}\]
उत्तर
Explanation:
Let I = `int_1^sqrt(3) dx/(1 + x^2)`
= `[tan^-1 x]_1^sqrt(3)`
= `tan^-1 sqrt(3) - tan^-1 1`
= `π/3 - π/4`
= `(4π - 3π)/12`
= `π/12`
संबंधित प्रश्न
Evaluate each of the following integral:
Evaluate each of the following integral:
The value of the integral \[\int\limits_0^\infty \frac{x}{\left( 1 + x \right)\left( 1 + x^2 \right)} dx\]
If \[\int\limits_0^a \frac{1}{1 + 4 x^2} dx = \frac{\pi}{8},\] then a equals
If \[I_{10} = \int\limits_0^{\pi/2} x^{10} \sin x\ dx,\] then the value of I10 + 90I8 is
If f (a + b − x) = f (x), then \[\int\limits_a^b\] x f (x) dx is equal to
The value of \[\int\limits_{- \pi/2}^{\pi/2} \left( x^3 + x \cos x + \tan^5 x + 1 \right) dx, \] is
\[\int\limits_0^1 \cos^{- 1} \left( \frac{1 - x^2}{1 + x^2} \right) dx\]
\[\int\limits_0^{\pi/3} \frac{\cos x}{3 + 4 \sin x} dx\]
\[\int\limits_0^{\pi/2} \frac{\sin x}{\sqrt{1 + \cos x}} dx\]
\[\int\limits_0^1 \left( \cos^{- 1} x \right)^2 dx\]
\[\int\limits_0^{\pi/2} \frac{1}{1 + \cot^7 x} dx\]
\[\int\limits_0^\pi \frac{x \sin x}{1 + \cos^2 x} dx\]
\[\int\limits_0^{\pi/2} \frac{\sin^2 x}{\sin x + \cos x} dx\]
\[\int\limits_0^\pi \frac{dx}{6 - \cos x}dx\]
\[\int\limits_0^4 x dx\]
\[\int\limits_2^3 e^{- x} dx\]
Using second fundamental theorem, evaluate the following:
`int_0^3 ("e"^x "d"x)/(1 + "e"^x)`
Evaluate the following using properties of definite integral:
`int_(- pi/4)^(pi/4) x^3 cos^3 x "d"x`
Evaluate the following integrals as the limit of the sum:
`int_0^1 (x + 4) "d"x`
Choose the correct alternative:
Using the factorial representation of the gamma function, which of the following is the solution for the gamma function Γ(n) when n = 8 is
Find `int sqrt(10 - 4x + 4x^2) "d"x`
If `int (3"e"^x - 5"e"^-x)/(4"e"6x + 5"e"^-x)"d"x` = ax + b log |4ex + 5e –x| + C, then ______.
Verify the following:
`int (2x + 3)/(x^2 + 3x) "d"x = log|x^2 + 3x| + "C"`
Evaluate the following:
`int ((x^2 + 2))/(x + 1) "d"x`