हिंदी

5 ∫ 0 ( X + 1 ) D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\limits_0^5 \left( x + 1 \right) dx\]
योग

उत्तर

\[\int_a^b f\left( x \right) d x = \lim_{h \to 0} h\left[ f\left( a \right) + f\left( a + h \right) + f\left( a + 2h \right) . . . . . . . . . . . . . . . + f\left\{ a + \left( n - 1 \right)h \right\} \right]\]
\[\text{where }h = \frac{b - a}{n}\]

\[\text{Here }a = 0, b = 5, f\left( x \right) = x + 1, h = \frac{5 - 0}{n} = \frac{5}{n}\]
Therefore,
\[I = \int_0^5 \left( x + 1 \right) d x\]
\[ = \lim_{h \to 0} h\left[ f\left( 0 \right) + f\left( 0 + h \right) + . . . . . . . . . . . . . . . . . . . . + f\left\{ 0 + \left( n - 1 \right)h \right\} \right]\]
\[ = \lim_{h \to 0} h\left[ \left( 0 + 1 \right) + \left( h + 1 \right) + . . . . . . . . . . . . . . . + \left\{ \left( n - 1 \right)h + 1 \right\} \right]\]
\[ = \lim_{h \to 0} h\left[ n + h\left\{ 1 + 2 + 3 + . . . . . . . . . . . . . . . . . + \left( n - 1 \right)h \right\} \right]\]
\[ = \lim_{h \to 0} h\left[ n + h\frac{n\left( n - 1 \right)}{2} \right]\]
\[ = \lim_{n \to \infty} \frac{5}{n}\left[ n + \frac{5\left( n - 1 \right)}{2} \right]\]
\[ = \lim_{n \to \infty} 5\left[ 1 + \frac{5}{2}\left( 1 - \frac{1}{n} \right) \right]\]
\[ = 5 + \frac{25}{2}\]
\[ = \frac{35}{2}\]

shaalaa.com
Definite Integrals
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 20: Definite Integrals - Exercise 20.6 [पृष्ठ १११]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 20 Definite Integrals
Exercise 20.6 | Q 28 | पृष्ठ १११

संबंधित प्रश्न

\[\int\limits_0^{\pi/4} \sec x dx\]

\[\int\limits_0^{\pi/2} \cos^3 x\ dx\]

\[\int\limits_0^2 \frac{1}{4 + x - x^2} dx\]

\[\int\limits_0^{2\pi} e^{x/2} \sin\left( \frac{x}{2} + \frac{\pi}{4} \right) dx\]

\[\int\limits_1^2 e^{2x} \left( \frac{1}{x} - \frac{1}{2 x^2} \right) dx\]

\[\int\limits_0^{\pi/2} \frac{1}{5 \cos x + 3 \sin x} dx\]

\[\int\limits_0^{\pi/2} \frac{dx}{a \cos x + b \sin x}a, b > 0\]

\[\int\limits_0^{\pi/4} \frac{\tan^3 x}{1 + \cos 2x} dx\]

\[\int\limits_0^{\pi/4} \sin^3 2t \cos 2t\ dt\]

\[\int_{- 1}^2 \left( \left| x + 1 \right| + \left| x \right| + \left| x - 1 \right| \right)dx\]

 


\[\int\limits_{\pi/6}^{\pi/3} \frac{1}{1 + \sqrt{\tan x}} dx\]

If  \[f\left( a + b - x \right) = f\left( x \right)\] , then prove that \[\int_a^b xf\left( x \right)dx = \frac{a + b}{2} \int_a^b f\left( x \right)dx\]

 


\[\int\limits_0^\pi x \log \sin x\ dx\]

\[\int\limits_0^\pi \log\left( 1 - \cos x \right) dx\]

\[\int\limits_0^1 \log\left( \frac{1}{x} - 1 \right) dx\]

 


Prove that:

\[\int_0^\pi xf\left( \sin x \right)dx = \frac{\pi}{2} \int_0^\pi f\left( \sin x \right)dx\]

\[\int\limits_0^3 \left( x + 4 \right) dx\]

Evaluate : 

\[\int\limits_2^3 3^x dx .\]

\[\int\limits_0^2 x\left[ x \right] dx .\]

\[\int\limits_1^2 \log_e \left[ x \right] dx .\]

The value of \[\int\limits_0^{2\pi} \sqrt{1 + \sin\frac{x}{2}}dx\] is 


\[\int\limits_0^1 \frac{d}{dx}\left\{ \sin^{- 1} \left( \frac{2x}{1 + x^2} \right) \right\} dx\] is equal to

\[\int\limits_0^{2a} f\left( x \right) dx\]  is equal to


\[\int\limits_0^1 \frac{1 - x}{1 + x} dx\]


\[\int\limits_0^{\pi/4} \tan^4 x dx\]


\[\int\limits_0^1 \left| 2x - 1 \right| dx\]


\[\int\limits_0^\pi \cos 2x \log \sin x dx\]


\[\int\limits_0^\pi \frac{x}{a^2 - \cos^2 x} dx, a > 1\]


\[\int\limits_0^{\pi/2} \frac{dx}{4 \cos x + 2 \sin x}dx\]


\[\int\limits_1^3 \left( 2 x^2 + 5x \right) dx\]


Using second fundamental theorem, evaluate the following:

`int_0^1 "e"^(2x)  "d"x`


Evaluate the following:

`int_1^4` f(x) dx where f(x) = `{{:(4x + 3",", 1 ≤ x ≤ 2),(3x + 5",", 2 < x ≤ 4):}`


Evaluate the following using properties of definite integral:

`int_0^1 log (1/x - 1)  "d"x`


Choose the correct alternative:

`int_0^1 (2x + 1)  "d"x` is


Choose the correct alternative:

`int_0^oo "e"^(-2x)  "d"x` is


Find `int sqrt(10 - 4x + 4x^2)  "d"x`


`int (cos2x - cos 2theta)/(cosx - costheta) "d"x` is equal to ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×