Advertisements
Advertisements
प्रश्न
उत्तर
\[\int_a^b f\left( x \right) d x = \lim_{h \to 0} h\left[ f\left( a \right) + f\left( a + h \right) + f\left( a + 2h \right) . . . . . . . . . . . . . . . + f\left\{ a + \left( n - 1 \right)h \right\} \right]\]
\[\text{where }h = \frac{b - a}{n}\]
\[\text{Here }a = 0, b = 5, f\left( x \right) = x + 1, h = \frac{5 - 0}{n} = \frac{5}{n}\]
Therefore,
\[I = \int_0^5 \left( x + 1 \right) d x\]
\[ = \lim_{h \to 0} h\left[ f\left( 0 \right) + f\left( 0 + h \right) + . . . . . . . . . . . . . . . . . . . . + f\left\{ 0 + \left( n - 1 \right)h \right\} \right]\]
\[ = \lim_{h \to 0} h\left[ \left( 0 + 1 \right) + \left( h + 1 \right) + . . . . . . . . . . . . . . . + \left\{ \left( n - 1 \right)h + 1 \right\} \right]\]
\[ = \lim_{h \to 0} h\left[ n + h\left\{ 1 + 2 + 3 + . . . . . . . . . . . . . . . . . + \left( n - 1 \right)h \right\} \right]\]
\[ = \lim_{h \to 0} h\left[ n + h\frac{n\left( n - 1 \right)}{2} \right]\]
\[ = \lim_{n \to \infty} \frac{5}{n}\left[ n + \frac{5\left( n - 1 \right)}{2} \right]\]
\[ = \lim_{n \to \infty} 5\left[ 1 + \frac{5}{2}\left( 1 - \frac{1}{n} \right) \right]\]
\[ = 5 + \frac{25}{2}\]
\[ = \frac{35}{2}\]
APPEARS IN
संबंधित प्रश्न
If \[f\left( a + b - x \right) = f\left( x \right)\] , then prove that \[\int_a^b xf\left( x \right)dx = \frac{a + b}{2} \int_a^b f\left( x \right)dx\]
Prove that:
Evaluate :
The value of \[\int\limits_0^{2\pi} \sqrt{1 + \sin\frac{x}{2}}dx\] is
\[\int\limits_0^{2a} f\left( x \right) dx\] is equal to
\[\int\limits_0^1 \frac{1 - x}{1 + x} dx\]
\[\int\limits_0^{\pi/4} \tan^4 x dx\]
\[\int\limits_0^1 \left| 2x - 1 \right| dx\]
\[\int\limits_0^\pi \cos 2x \log \sin x dx\]
\[\int\limits_0^\pi \frac{x}{a^2 - \cos^2 x} dx, a > 1\]
\[\int\limits_0^{\pi/2} \frac{dx}{4 \cos x + 2 \sin x}dx\]
\[\int\limits_1^3 \left( 2 x^2 + 5x \right) dx\]
Using second fundamental theorem, evaluate the following:
`int_0^1 "e"^(2x) "d"x`
Evaluate the following:
`int_1^4` f(x) dx where f(x) = `{{:(4x + 3",", 1 ≤ x ≤ 2),(3x + 5",", 2 < x ≤ 4):}`
Evaluate the following using properties of definite integral:
`int_0^1 log (1/x - 1) "d"x`
Choose the correct alternative:
`int_0^1 (2x + 1) "d"x` is
Choose the correct alternative:
`int_0^oo "e"^(-2x) "d"x` is
Find `int sqrt(10 - 4x + 4x^2) "d"x`
`int (cos2x - cos 2theta)/(cosx - costheta) "d"x` is equal to ______.