हिंदी

1 ∫ 0 Log ( 1 X − 1 ) D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\limits_0^1 \log\left( \frac{1}{x} - 1 \right) dx\]

 

योग

उत्तर

\[Let\ I = \int_0^1 \log\left( \frac{1}{x} - 1 \right) d x ...............(1)\]
\[ = \int_0^1 \log\left( \frac{1}{1 - x} - 1 \right) d x ...............\left[\text{Using }\int_0^a f(x) dx = \int_0^a f(a - x) dx \right]\]
\[ I = \int_0^1 \log\left( \frac{x}{1 - x} \right) dx ...............(2)\]
\[\text{Adding (1) and (2)}\]
\[2I = \int_0^1 \log\left( \frac{1 - x}{x} \right) + \log\left( \frac{x}{1 - x} \right) dx\]
\[ = \int_0^1 \log\left( \frac{1 - x}{x} \times \frac{x}{1 - x} \right) dx\]
\[ = \int_0^1 \log1 dx \]
\[ = 0\]
\[Hence\ I = 0\]

shaalaa.com
Definite Integrals
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 20: Definite Integrals - Exercise 20.5 [पृष्ठ ९५]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 20 Definite Integrals
Exercise 20.5 | Q 34 | पृष्ठ ९५

संबंधित प्रश्न

\[\int\limits_0^\pi \frac{1}{1 + \sin x} dx\]

\[\int\limits_0^{\pi/2} \cos^3 x\ dx\]

\[\int\limits_0^{\pi/2} \left( a^2 \cos^2 x + b^2 \sin^2 x \right) dx\]

\[\int\limits_0^{\pi/2} \sqrt{1 + \sin x}\ dx\]

\[\int\limits_0^1 x e^{x^2} dx\]

\[\int\limits_{- 1}^1 5 x^4 \sqrt{x^5 + 1} dx\]

\[\int_0^\frac{\pi}{2} \frac{\cos^2 x}{1 + 3 \sin^2 x}dx\]

\[\int\limits_0^1 \left( \cos^{- 1} x \right)^2 dx\]

\[\int\limits_1^4 f\left( x \right) dx, where f\left( x \right) = \begin{cases}7x + 3 & , & \text{if }1 \leq x \leq 3 \\ 8x & , & \text{if }3 \leq x \leq 4\end{cases}\]


\[\int_{- 1}^2 \left( \left| x + 1 \right| + \left| x \right| + \left| x - 1 \right| \right)dx\]

 


\[\int_{- 2}^2 x e^\left| x \right| dx\]

Evaluate each of the following integral:

\[\int_a^b \frac{x^\frac{1}{n}}{x^\frac{1}{n} + \left( a + b - x \right)^\frac{1}{n}}dx, n \in N, n \geq 2\]


\[\int\limits_0^\pi x \log \sin x\ dx\]

\[\int\limits_{- \pi/4}^{\pi/4} \sin^2 x\ dx\]

\[\int\limits_0^2 x\sqrt{2 - x} dx\]

Evaluate the following integral:

\[\int_{- 1}^1 \left| xcos\pi x \right|dx\]

 


Prove that:

\[\int_0^\pi xf\left( \sin x \right)dx = \frac{\pi}{2} \int_0^\pi f\left( \sin x \right)dx\]

\[\int\limits_0^4 \left( x + e^{2x} \right) dx\]

\[\int\limits_0^2 \left( x^2 + 2x + 1 \right) dx\]

\[\int\limits_0^{\pi/2} \cos^2 x\ dx .\]

\[\int\limits_{- \pi/2}^{\pi/2} x \cos^2 x\ dx .\]

 


Solve each of the following integral:

\[\int_2^4 \frac{x}{x^2 + 1}dx\]

\[\int\limits_0^\sqrt{2} \left[ x^2 \right] dx .\]

If \[\left[ \cdot \right] and \left\{ \cdot \right\}\] denote respectively the greatest integer and fractional part functions respectively, evaluate the following integrals:

\[\int\limits_0^{\pi/4} \sin \left\{ x \right\} dx\]

 


The value of the integral \[\int\limits_0^{\pi/2} \frac{\sqrt{\cos x}}{\sqrt{\cos x} + \sqrt{\sin x}} dx\]  is 


\[\int\limits_0^\infty \frac{1}{1 + e^x} dx\]  equals


Given that \[\int\limits_0^\infty \frac{x^2}{\left( x^2 + a^2 \right)\left( x^2 + b^2 \right)\left( x^2 + c^2 \right)} dx = \frac{\pi}{2\left( a + b \right)\left( b + c \right)\left( c + a \right)},\] the value of \[\int\limits_0^\infty \frac{dx}{\left( x^2 + 4 \right)\left( x^2 + 9 \right)},\]


\[\int\limits_{- 1}^1 \left| 1 - x \right| dx\]  is equal to

\[\int\limits_0^1 \tan^{- 1} x dx\]


\[\int\limits_0^{\pi/4} \cos^4 x \sin^3 x dx\]


\[\int\limits_0^1 \left( \cos^{- 1} x \right)^2 dx\]


\[\int\limits_0^{\pi/4} e^x \sin x dx\]


\[\int\limits_0^3 \left( x^2 + 1 \right) dx\]


Using second fundamental theorem, evaluate the following:

`int_0^(1/4) sqrt(1 - 4)  "d"x`


Using second fundamental theorem, evaluate the following:

`int_1^"e" ("d"x)/(x(1 + logx)^3`


Evaluate the following using properties of definite integral:

`int_(-1)^1 log ((2 - x)/(2 + x))  "d"x`


Evaluate the following:

Γ(4)


Evaluate the following:

`int_0^oo "e"^(-mx) x^6 "d"x`


Choose the correct alternative:

`Γ(3/2)`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×