Advertisements
Advertisements
प्रश्न
Evaluate the following:
`int_0^oo "e"^(-mx) x^6 "d"x`
योग
उत्तर
`int_0^oo "e"^(-mx) x^6 "d"x = int_0^oo x^"n""e"^(-"a"x) "d"x`
= `("n"!)/("a"^("n" + 1)`
Where n = 6
a = m
So the integral becomes = `(6!)/(3^(6 + 1)) = (6!)/"m"^7`
shaalaa.com
Definite Integrals
क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 2: Integral Calculus – 1 - Exercise 2.10 [पृष्ठ ५१]
APPEARS IN
संबंधित प्रश्न
\[\int\limits_{- 2}^3 \frac{1}{x + 7} dx\]
\[\int\limits_0^{2\pi} e^{x/2} \sin\left( \frac{x}{2} + \frac{\pi}{4} \right) dx\]
Prove that:
\[\int_0^\pi xf\left( \sin x \right)dx = \frac{\pi}{2} \int_0^\pi f\left( \sin x \right)dx\]
\[\int\limits_0^{\pi/2} \frac{\sin^n x}{\sin^n x + \cos^n x} dx, n \in N .\]
If \[\int\limits_0^a 3 x^2 dx = 8,\] write the value of a.
\[\int\limits_1^e \log x\ dx =\]
The value of the integral \[\int\limits_{- 2}^2 \left| 1 - x^2 \right| dx\] is ________ .
\[\int\limits_2^3 \frac{\sqrt{x}}{\sqrt{5 - x} + \sqrt{x}} dx\]
Integrate `((2"a")/sqrt(x) - "b"/x^2 + 3"c"root(3)(x^2))` w.r.t. x
Evaluate `int "dx"/sqrt((x - alpha)(beta - x)), beta > alpha`