Advertisements
Advertisements
प्रश्न
Evaluate the following:
`int_0^oo "e"^(-mx) x^6 "d"x`
बेरीज
उत्तर
`int_0^oo "e"^(-mx) x^6 "d"x = int_0^oo x^"n""e"^(-"a"x) "d"x`
= `("n"!)/("a"^("n" + 1)`
Where n = 6
a = m
So the integral becomes = `(6!)/(3^(6 + 1)) = (6!)/"m"^7`
shaalaa.com
Definite Integrals
या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 2: Integral Calculus – 1 - Exercise 2.10 [पृष्ठ ५१]
APPEARS IN
संबंधित प्रश्न
\[\int_0^\frac{1}{2} \frac{x \sin^{- 1} x}{\sqrt{1 - x^2}}dx\]
\[\int\limits_0^1 \frac{\log\left( 1 + x \right)}{1 + x^2} dx\]
If `f` is an integrable function such that f(2a − x) = f(x), then prove that
\[\int\limits_0^{2a} f\left( x \right) dx = 2 \int\limits_0^a f\left( x \right) dx\]
\[\int\limits_{- 1}^1 x\left| x \right| dx .\]
The value of \[\int\limits_0^{2\pi} \sqrt{1 + \sin\frac{x}{2}}dx\] is
\[\int\limits_0^{\pi/2} \frac{1}{2 + \cos x} dx\] equals
\[\int\limits_0^{\pi/2} \sin\ 2x\ \log\ \tan x\ dx\] is equal to
\[\int\limits_0^1 \cos^{- 1} \left( \frac{1 - x^2}{1 + x^2} \right) dx\]
Evaluate the following using properties of definite integral:
`int_(-1)^1 log ((2 - x)/(2 + x)) "d"x`
Choose the correct alternative:
Γ(n) is