Advertisements
Advertisements
प्रश्न
उत्तर
\[\left| x \right| = \begin{cases} - x &,& - 1 < x < 0\\ x &,& 0 < x < 1\end{cases}\]
\[ \therefore x\left| x \right| = \begin{cases} - x^2 &,& - 1 < x < 0\\ x^2 &,& 0 < x < 1\end{cases}\]
\[Now\, \int_{- 1}^1 x\left| x \right| d x\]
\[ = \int_{- 1}^0 - x^2 dx + \int_0^1 x^2 dx\]
\[ = - \int_{- 1}^0 x^2 dx + \int_0^1 x^2 dx\]
\[ = - \left[ \frac{x^3}{3} \right]_{- 1}^0 + \left[ \frac{x^3}{3} \right]_0^1 \]
\[ = - \left( 0 + \frac{1}{3} \right) + \left( \frac{1}{3} - 0 \right)\]
\[ = 0 - \frac{1}{3} + \frac{1}{3} - 0\]
\[ = 0\]
APPEARS IN
संबंधित प्रश्न
Evaluate the following integral:
The value of \[\int\limits_0^{\pi/2} \cos x\ e^{\sin x}\ dx\] is
If \[I_{10} = \int\limits_0^{\pi/2} x^{10} \sin x\ dx,\] then the value of I10 + 90I8 is
Evaluate : \[\int\limits_0^\pi/4 \frac{\sin x + \cos x}{16 + 9 \sin 2x}dx\] .
Evaluate : \[\int\frac{dx}{\sin^2 x \cos^2 x}\] .
\[\int\limits_1^3 \left| x^2 - 2x \right| dx\]
\[\int\limits_0^1 \left| \sin 2\pi x \right| dx\]
\[\int\limits_0^{2\pi} \cos^7 x dx\]
\[\int\limits_0^\pi \frac{x \tan x}{\sec x + \tan x} dx\]
Using second fundamental theorem, evaluate the following:
`int_0^3 ("e"^x "d"x)/(1 + "e"^x)`
Evaluate the following using properties of definite integral:
`int_0^(i/2) (sin^7x)/(sin^7x + cos^7x) "d"x`
Evaluate the following using properties of definite integral:
`int_0^1 x/((1 - x)^(3/4)) "d"x`
Evaluate the following integrals as the limit of the sum:
`int_1^3 (2x + 3) "d"x`
Evaluate `int "dx"/sqrt((x - alpha)(beta - x)), beta > alpha`
If `int (3"e"^x - 5"e"^-x)/(4"e"6x + 5"e"^-x)"d"x` = ax + b log |4ex + 5e –x| + C, then ______.
`int (cos2x - cos 2theta)/(cosx - costheta) "d"x` is equal to ______.
`int x^3/(x + 1)` is equal to ______.