Advertisements
Advertisements
प्रश्न
`int (cos2x - cos 2theta)/(cosx - costheta) "d"x` is equal to ______.
पर्याय
2(sinx + xcosθ) + C
2(sinx – xcosθ) + C
2(sinx + 2xcosθ) + C
2(sinx – 2x cosθ) + C
उत्तर
`int (cos2x - cos 2theta)/(cosx - costheta) "d"x` is equal to 2(sinx + xcosθ) + C.
Explanation:
Let I = `int (cos2x - cos 2theta)/(cosx - costheta) "d"x`
= `int ((2cos^2x - 1 - 2 cos^2theta + 1))/(cosx - costheta) "d"x`
= `2int ((cosx + cos theta)(cosx - costheta))/((cosx - costheta)) "d"x`
= `2int(cos x + cos theta) "d"x`
= 2(sinx + xcosθ) + C
APPEARS IN
संबंधित प्रश्न
If f (x) is a continuous function defined on [0, 2a]. Then, prove that
\[\int\limits_0^{\pi/2} \frac{\sin x}{\sqrt{1 + \cos x}} dx\]
\[\int\limits_0^{\pi/2} \left| \sin x - \cos x \right| dx\]
\[\int\limits_0^{15} \left[ x^2 \right] dx\]
Evaluate the following:
f(x) = `{{:("c"x",", 0 < x < 1),(0",", "otherwise"):}` Find 'c" if `int_0^1 "f"(x) "d"x` = 2
Verify the following:
`int (2x + 3)/(x^2 + 3x) "d"x = log|x^2 + 3x| + "C"`
`int x^9/(4x^2 + 1)^6 "d"x` is equal to ______.
`int (x + 3)/(x + 4)^2 "e"^x "d"x` = ______.