मराठी

∫ 1 2 0 1 ( 1 + X 2 ) √ 1 − X 2 D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int_0^\frac{1}{2} \frac{1}{\left( 1 + x^2 \right)\sqrt{1 - x^2}}dx\]
बेरीज

उत्तर

\[\text{Let I }= \int_0^\frac{1}{2} \frac{1}{\left( 1 + x^2 \right)\sqrt{1 - x^2}}dx\]

Put

\[x = \sin\theta\]
`therefore dx=costheta d theta`
When \[x \to 0, \theta \to 0\]

When `xrarr1/2, thetararrpi/6`

\[\therefore I = \int_0^\frac{\pi}{6} \frac{1}{\left( 1 + \sin^2 \theta \right)\cos\theta} \times \cos\theta d\theta\]
\[ = \int_0^\frac{\pi}{6} \frac{1}{1 + \sin^2 \theta}d\theta\]

Dividing numerator and denominator by `cos^2theta, `we have

\[I = \int_0^\frac{\pi}{6} \frac{\sec^2 \theta}{\sec^2 \theta + \tan^2 \theta}d\theta\]
\[ = \int_0^\frac{\pi}{6} \frac{\sec^2 \theta}{1 + 2 \tan^2 \theta}d\theta\]

Now, put `tantheta = u`

`therefore sec^2thetad theta=du`

When `thetararr0, u rarr0`

When \[\theta \to \frac{\pi}{6}, u \to \frac{1}{\sqrt{3}}\]

\[\therefore I = \int_0^\frac{1}{\sqrt{3}} \frac{du}{1 + 2 u^2}\]
\[ = \int_0^\frac{1}{\sqrt{3}} \frac{du}{1 + \left( \sqrt{2}u \right)^2}\]
\[ = \left.\frac{\tan^{- 1} \sqrt{2}u}{\sqrt{2}}\right|_0^\frac{1}{\sqrt{3}} \]
\[ = \frac{1}{\sqrt{2}}\left( \tan^{- 1} \frac{\sqrt{2}}{\sqrt{3}} - 0 \right)\]
\[ = \frac{1}{\sqrt{2}} \tan^{- 1} \sqrt{\frac{2}{3}}\]

shaalaa.com
Definite Integrals
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 20: Definite Integrals - Exercise 20.2 [पृष्ठ ४०]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 20 Definite Integrals
Exercise 20.2 | Q 58 | पृष्ठ ४०

संबंधित प्रश्‍न

\[\int\limits_0^1 \frac{x}{x + 1} dx\]

\[\int\limits_{\pi/4}^{\pi/2} \cot x\ dx\]


\[\int\limits_{- \pi/4}^{\pi/4} \frac{1}{1 + \sin x} dx\]

\[\int\limits_0^{\pi/2} \sin x \sin 2x\ dx\]

\[\int\limits_1^e \frac{\log x}{x} dx\]

\[\int\limits_0^1 \frac{1}{2 x^2 + x + 1} dx\]

\[\int_0^1 \frac{1}{1 + 2x + 2 x^2 + 2 x^3 + x^4}dx\]

\[\int\limits_2^4 \frac{x}{x^2 + 1} dx\]

\[\int\limits_0^a \frac{x}{\sqrt{a^2 + x^2}} dx\]

\[\int\limits_0^1 x e^{x^2} dx\]

\[\int\limits_4^{12} x \left( x - 4 \right)^{1/3} dx\]

\[\int_\frac{1}{3}^1 \frac{\left( x - x^3 \right)^\frac{1}{3}}{x^4}dx\]

Evaluate each of the following integral:

\[\int_a^b \frac{x^\frac{1}{n}}{x^\frac{1}{n} + \left( a + b - x \right)^\frac{1}{n}}dx, n \in N, n \geq 2\]


If  \[f\left( a + b - x \right) = f\left( x \right)\] , then prove that \[\int_a^b xf\left( x \right)dx = \frac{a + b}{2} \int_a^b f\left( x \right)dx\]

 


\[\int_0^1 | x\sin \pi x | dx\]

\[\int\limits_0^2 \left( 3 x^2 - 2 \right) dx\]

\[\int\limits_{- \pi/2}^{\pi/2} \cos^2 x\ dx .\]

\[\int\limits_0^{\pi/2} \log \tan x\ dx .\]

\[\int\limits_0^{\pi/2} \log \left( \frac{3 + 5 \cos x}{3 + 5 \sin x} \right) dx .\]

 


\[\int\limits_{- 1}^1 x\left| x \right| dx .\]

\[\int\limits_0^1 \frac{2x}{1 + x^2} dx\]

\[\int\limits_0^1 2^{x - \left[ x \right]} dx\]

\[\int\limits_0^\infty \frac{1}{1 + e^x} dx\]  equals


The value of the integral \[\int\limits_0^\infty \frac{x}{\left( 1 + x \right)\left( 1 + x^2 \right)} dx\]

 


\[\int\limits_0^{\pi/2} \frac{1}{1 + \tan x} dx\]  is equal to

\[\int\limits_{\pi/6}^{\pi/3} \frac{1}{\sin 2x} dx\]  is equal to

The derivative of \[f\left( x \right) = \int\limits_{x^2}^{x^3} \frac{1}{\log_e t} dt, \left( x > 0 \right),\] is

 


\[\int\limits_0^1 \frac{d}{dx}\left\{ \sin^{- 1} \left( \frac{2x}{1 + x^2} \right) \right\} dx\] is equal to

\[\int\limits_0^{\pi/4} e^x \sin x dx\]


\[\int\limits_0^1 \left| 2x - 1 \right| dx\]


\[\int\limits_{- \pi/2}^{\pi/2} \sin^9 x dx\]


\[\int\limits_0^\pi x \sin x \cos^4 x dx\]


\[\int\limits_0^1 \cot^{- 1} \left( 1 - x + x^2 \right) dx\]


Using second fundamental theorem, evaluate the following:

`int_1^2 (x - 1)/x^2  "d"x`


If f(x) = `{{:(x^2"e"^(-2x)",", x ≥ 0),(0",", "otherwise"):}`, then evaluate `int_0^oo "f"(x) "d"x`


Integrate `((2"a")/sqrt(x) - "b"/x^2 + 3"c"root(3)(x^2))` w.r.t. x


Evaluate `int "dx"/sqrt((x - alpha)(beta - x)), beta > alpha`


Evaluate `int (x^2 + x)/(x^4 - 9) "d"x`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×