Advertisements
Advertisements
प्रश्न
उत्तर
\[\text{Let I }=\int_\frac{1}{3}^1 \frac{\left( x - x^3 \right)^\frac{1}{3}}{x^4}dx\]
\[= \int_\frac{1}{3}^1 \frac{\left[ x^3 \left( \frac{x}{x^3} - 1 \right) \right]^\frac{1}{3}}{x^4}dx\]
\[ = \int_\frac{1}{3}^1 \frac{x \left( \frac{1}{x^2} - 1 \right)^\frac{1}{3}}{x^4}dx\]
\[ = \int_\frac{1}{3}^1 \frac{\left( \frac{1}{x^2} - 1 \right)^\frac{1}{3}}{x^3}dx\]
Put
\[\therefore - \frac{2}{x^3}dx = dz\]
\[ \Rightarrow \frac{dx}{x^3} = - \frac{dz}{2}\]
When
When
\[\therefore I = - \frac{1}{2} \int_8^0 z^\frac{1}{3} dz\]
\[ = \left.- \frac{1}{2} \times \frac{z^\frac{4}{3}}{\frac{4}{3}}\right|_8^0 \]
\[ = - \frac{3}{8}\left[ 0 - \left( 8 \right)^\frac{4}{3} \right]\]
\[ = - \frac{3}{8} \times \left( - 16 \right)\]
\[ = 6\]
APPEARS IN
संबंधित प्रश्न
Evaluate the following definite integrals:
If `f` is an integrable function such that f(2a − x) = f(x), then prove that
The value of the integral \[\int\limits_0^{\pi/2} \frac{\sqrt{\cos x}}{\sqrt{\cos x} + \sqrt{\sin x}} dx\] is
If \[\int\limits_0^a \frac{1}{1 + 4 x^2} dx = \frac{\pi}{8},\] then a equals
If \[\int\limits_0^1 f\left( x \right) dx = 1, \int\limits_0^1 xf\left( x \right) dx = a, \int\limits_0^1 x^2 f\left( x \right) dx = a^2 , then \int\limits_0^1 \left( a - x \right)^2 f\left( x \right) dx\] equals
The value of \[\int\limits_{- \pi}^\pi \sin^3 x \cos^2 x\ dx\] is
\[\int\limits_0^{2a} f\left( x \right) dx\] is equal to
Evaluate : \[\int\limits_0^\pi/4 \frac{\sin x + \cos x}{16 + 9 \sin 2x}dx\] .
\[\int\limits_0^4 x\sqrt{4 - x} dx\]
\[\int\limits_0^1 \left( \cos^{- 1} x \right)^2 dx\]
\[\int\limits_0^\pi \frac{x}{a^2 - \cos^2 x} dx, a > 1\]
\[\int\limits_0^{\pi/2} \frac{dx}{4 \cos x + 2 \sin x}dx\]
Using second fundamental theorem, evaluate the following:
`int_1^"e" ("d"x)/(x(1 + logx)^3`
Evaluate the following:
f(x) = `{{:("c"x",", 0 < x < 1),(0",", "otherwise"):}` Find 'c" if `int_0^1 "f"(x) "d"x` = 2
If x = `int_0^y "dt"/sqrt(1 + 9"t"^2)` and `("d"^2y)/("d"x^2)` = ay, then a equal to ______.
Verify the following:
`int (2x + 3)/(x^2 + 3x) "d"x = log|x^2 + 3x| + "C"`
Given `int "e"^"x" (("x" - 1)/("x"^2)) "dx" = "e"^"x" "f"("x") + "c"`. Then f(x) satisfying the equation is: