πa2−b2
πa2+b2
(a + b) π
We have
I=∫0π1a+bcosxdx
=∫0π1a+b1−tan2x21+tan2x2dx
=∫0π1+tan2x2a(1+tan2x2)+b(1−tan2x2)dx
=∫0π1+tan2x2(a+b)+(a−b)tan2x2dx
=∫0πsec2x2(a+b)+(a−b)tan2x2dx
PuttingPuttingtanx2=t
⇒12sec2x2dx=dt
⇒sec2x2dx=2dt
When x→0;t→0
and x→π;t→∞
∴I=∫0∞2dt(a+b)+(a−b)t2
=2a−b∫0∞1(a+ba−b)+t2dt
=2(a−b)∫0∞1(a+ba−b)2+t2dt
=2(a−b)×a−ba+b[tan−1ta+ba−b]0∞
=2a2−b2[π2−0]
=2a2−b2[π2]
=πa2−b2
∫0(π)2/3xcos2x3/2dx
∫0π/212+cosxdx equals
If ∫0a11+4x2dx=π8, then a equals
The value of ∫−ππsin3xcos2x dx is
The value of ∫01tan−1(2x−11+x−x2)dx, is
∫01cos−1(1−x21+x2)dx
∫12x+3x(x+2)dx
∫0π/4tan4xdx
∫13|x2−4|dx
∫02πcos7xdx
∫04xdx
∫13(2x2+5x)dx
Find : ∫ablogxx dx
Using second fundamental theorem, evaluate the following:
ed∫01e2x dx
d∫-112x+3x2+3x+7 dx
Evaluate d∫1+x1-xdx, x ≠1
Evaluate d∫x2dxx4+x2-2
Verify the following:
dC∫2x+3x2+3xdx=log|x2+3x|+C