मराठी

Π ∫ 0 √ 1 − X 1 + X D X =π 2,π 2 − 1,π 2 + 1, π + 1 - Mathematics

Advertisements
Advertisements

प्रश्न

`int_0^1 sqrt((1 - "x")/(1 + "x")) "dx"`

पर्याय

  • \[\frac{\pi}{2}\]
  • \[\frac{\pi}{2} - 1\]

  • \[\frac{\pi}{2} + 1\]
  •  π + 1

  • None of these

MCQ

उत्तर

 None of the given option is correct.

\[\text{We have}, \]

\[I = \int_0^1 \sqrt{\frac{1 - x}{1 + x}} d x\]

`int_0^1 sqrt((1 - "x")/(1 + "x") xx (1 - "x")/(1 - "x"))   "dx"`

\[ = \int_0^1 \frac{1 - x}{\sqrt{1 - x^2}}dx\]

\[ = \int_0^1 \frac{1}{\sqrt{1 - x^2}}dx - \int_0^1 \frac{x}{\sqrt{1 - x^2}}dx\]

`=> int_0^1 1/sqrt(1 - "x"^2)  "dx" - int_0^1 "x"/sqrt(1 - "x"^2)`dx     ......`[int 1/(sqrt ("a"^2 - "x"^2)) "dx" = "sin"^-1 "x"/"a" + "C"]`

`= > ["sin"^-1 "x"/1]_0^1 + int_1^0 1/sqrt"t"  "dt"/2`

`=> [sin^-1 (1) - sin^-1(0)] + 1/2 int_1^0 "t"^(-1/2)`dt

 `=> pi/2 - 0 + 1/2 [2"t"^(1/2)]_0^1`

`=> pi/2 + (1 - "x"^2)^(1/2)int_0^1`

`=> pi/2 + [(1 - 1)^(1/2) - (1 - 0)^(1/2)]`

`=> pi/2 - 1^(1/2)`

`=> (pi/2 - 1)`

shaalaa.com
Definite Integrals
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 20: Definite Integrals - MCQ [पृष्ठ ११७]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 20 Definite Integrals
MCQ | Q 10 | पृष्ठ ११७

संबंधित प्रश्‍न

\[\int\limits_0^{\pi/2} \cos^3 x\ dx\]

\[\int\limits_{\pi/3}^{\pi/4} \left( \tan x + \cot x \right)^2 dx\]

\[\int\limits_0^{\pi/2} \left( a^2 \cos^2 x + b^2 \sin^2 x \right) dx\]

\[\int\limits_1^3 \frac{\log x}{\left( x + 1 \right)^2} dx\]

\[\int\limits_0^1 \left( x e^{2x} + \sin\frac{\ pix}{2} \right) dx\]

\[\int\limits_1^2 e^{2x} \left( \frac{1}{x} - \frac{1}{2 x^2} \right) dx\]

\[\int\limits_0^{\pi/2} \frac{\sin x \cos x}{1 + \sin^4 x} dx\]

\[\int\limits_0^{\pi/4} \frac{\tan^3 x}{1 + \cos 2x} dx\]

\[\int\limits_{- 1}^1 5 x^4 \sqrt{x^5 + 1} dx\]

\[\int\limits_0^{\pi/2} \frac{\sin x \cos x}{\cos^2 x + 3 \cos x + 2} dx\]

\[\int\limits_0^a \frac{1}{x + \sqrt{a^2 - x^2}} dx\]

\[\int\limits_0^1 \frac{\log\left( 1 + x \right)}{1 + x^2} dx\]

 


\[\int\limits_{- \pi/2}^{\pi/2} \sin^3 x\ dx\]

If `f` is an integrable function such that f(2a − x) = f(x), then prove that

\[\int\limits_0^{2a} f\left( x \right) dx = 2 \int\limits_0^a f\left( x \right) dx\]

 


\[\int\limits_0^5 \left( x + 1 \right) dx\]

\[\int\limits_0^\pi \cos^5 x\ dx .\]

\[\int\limits_0^1 \frac{2x}{1 + x^2} dx\]

Solve each of the following integral:

\[\int_2^4 \frac{x}{x^2 + 1}dx\]

\[\int\limits_0^1 e^\left\{ x \right\} dx .\]

\[\int\limits_0^1 \sqrt{x \left( 1 - x \right)} dx\] equals

\[\int\limits_0^\pi \frac{1}{a + b \cos x} dx =\]

\[\int\limits_0^{\pi/2} \frac{1}{1 + \cot^3 x} dx\]  is equal to

`int_0^(2a)f(x)dx`


\[\int\limits_1^2 \frac{x + 3}{x\left( x + 2 \right)} dx\]


\[\int\limits_1^3 \left| x^2 - 2x \right| dx\]


\[\int\limits_0^a \frac{\sqrt{x}}{\sqrt{x} + \sqrt{a - x}} dx\]


\[\int\limits_0^\pi \frac{x}{1 + \cos \alpha \sin x} dx\]


\[\int\limits_0^\pi \frac{dx}{6 - \cos x}dx\]


\[\int\limits_1^3 \left( x^2 + 3x \right) dx\]


Evaluate the following using properties of definite integral:

`int_(-1)^1 log ((2 - x)/(2 + x))  "d"x`


Evaluate the following using properties of definite integral:

`int_0^1 x/((1 - x)^(3/4))  "d"x`


Evaluate the following integrals as the limit of the sum:

`int_1^3 (2x + 3)  "d"x`


Choose the correct alternative:

The value of `int_(- pi/2)^(pi/2) cos  x  "d"x` is


Verify the following:

`int (x - 1)/(2x + 3) "d"x = x - log |(2x + 3)^2| + "C"`


`int "e"^x ((1 - x)/(1 + x^2))^2  "d"x` is equal to ______.


If `intx^3/sqrt(1 + x^2) "d"x = "a"(1 + x^2)^(3/2) + "b"sqrt(1 + x^2) + "C"`, then ______.


Evaluate: `int_(-1)^2 |x^3 - 3x^2 + 2x|dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×