Advertisements
Advertisements
प्रश्न
`int_0^1 sqrt((1 - "x")/(1 + "x")) "dx"`
पर्याय
- \[\frac{\pi}{2}\]
\[\frac{\pi}{2} - 1\]
- \[\frac{\pi}{2} + 1\]
π + 1
None of these
उत्तर
None of the given option is correct.
\[\text{We have}, \]
\[I = \int_0^1 \sqrt{\frac{1 - x}{1 + x}} d x\]
`int_0^1 sqrt((1 - "x")/(1 + "x") xx (1 - "x")/(1 - "x")) "dx"`
\[ = \int_0^1 \frac{1 - x}{\sqrt{1 - x^2}}dx\]
\[ = \int_0^1 \frac{1}{\sqrt{1 - x^2}}dx - \int_0^1 \frac{x}{\sqrt{1 - x^2}}dx\]
`=> int_0^1 1/sqrt(1 - "x"^2) "dx" - int_0^1 "x"/sqrt(1 - "x"^2)`dx ......`[int 1/(sqrt ("a"^2 - "x"^2)) "dx" = "sin"^-1 "x"/"a" + "C"]`
`= > ["sin"^-1 "x"/1]_0^1 + int_1^0 1/sqrt"t" "dt"/2`
`=> [sin^-1 (1) - sin^-1(0)] + 1/2 int_1^0 "t"^(-1/2)`dt
`=> pi/2 - 0 + 1/2 [2"t"^(1/2)]_0^1`
`=> pi/2 + (1 - "x"^2)^(1/2)int_0^1`
`=> pi/2 + [(1 - 1)^(1/2) - (1 - 0)^(1/2)]`
`=> pi/2 - 1^(1/2)`
`=> (pi/2 - 1)`
APPEARS IN
संबंधित प्रश्न
If `f` is an integrable function such that f(2a − x) = f(x), then prove that
Solve each of the following integral:
`int_0^(2a)f(x)dx`
\[\int\limits_1^2 \frac{x + 3}{x\left( x + 2 \right)} dx\]
\[\int\limits_1^3 \left| x^2 - 2x \right| dx\]
\[\int\limits_0^a \frac{\sqrt{x}}{\sqrt{x} + \sqrt{a - x}} dx\]
\[\int\limits_0^\pi \frac{x}{1 + \cos \alpha \sin x} dx\]
\[\int\limits_0^\pi \frac{dx}{6 - \cos x}dx\]
\[\int\limits_1^3 \left( x^2 + 3x \right) dx\]
Evaluate the following using properties of definite integral:
`int_(-1)^1 log ((2 - x)/(2 + x)) "d"x`
Evaluate the following using properties of definite integral:
`int_0^1 x/((1 - x)^(3/4)) "d"x`
Evaluate the following integrals as the limit of the sum:
`int_1^3 (2x + 3) "d"x`
Choose the correct alternative:
The value of `int_(- pi/2)^(pi/2) cos x "d"x` is
Verify the following:
`int (x - 1)/(2x + 3) "d"x = x - log |(2x + 3)^2| + "C"`
`int "e"^x ((1 - x)/(1 + x^2))^2 "d"x` is equal to ______.
If `intx^3/sqrt(1 + x^2) "d"x = "a"(1 + x^2)^(3/2) + "b"sqrt(1 + x^2) + "C"`, then ______.
Evaluate: `int_(-1)^2 |x^3 - 3x^2 + 2x|dx`