मराठी

Π / 2 ∫ 0 ( a 2 Cos 2 X + B 2 Sin 2 X ) D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\limits_0^{\pi/2} \left( a^2 \cos^2 x + b^2 \sin^2 x \right) dx\]

उत्तर

\[Let\ I = \int_0^\frac{\pi}{2} \left( a^2 \cos^2 x + b^2 \sin^2 x \right) d x . Then, \]
\[ I = \int_0^\frac{\pi}{2} \left( a^2 \cos^2 x + b^2 \left( 1 - \cos^2 x \right) \right) d x\]
\[ \Rightarrow I = \int_0^\frac{\pi}{2} \left( b^2 + \left( a^2 - b^2 \right) \cos^2 x \right) dx\]
\[ \Rightarrow I = \int_0^\frac{\pi}{2} \left( b^2 + \frac{\left( a^2 - b^2 \right)\left( 1 + \cos 2x \right)}{2} \right)dx\]
\[ \Rightarrow I = \left[ b^2 x + \frac{a^2 - b^2}{2}\left( x + \frac{\sin 2x}{2} \right) \right]_0^\frac{\pi}{2} \]
\[ \Rightarrow I = \frac{b^2 \pi}{2} + \frac{a^2 - b^2}{2}\frac{\pi}{2} + 0\]
\[ \Rightarrow I = \frac{\pi}{4}\left( a^2 + b^2 \right)\]

shaalaa.com
Definite Integrals
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 20: Definite Integrals - Exercise 20.1 [पृष्ठ १६]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 20 Definite Integrals
Exercise 20.1 | Q 23 | पृष्ठ १६

संबंधित प्रश्‍न

\[\int\limits_0^1 \frac{x}{x + 1} dx\]

Evaluate the following definite integrals:

\[\int_0^\frac{\pi}{2} x^2 \sin\ x\ dx\]

\[\int\limits_1^e \frac{\log x}{x} dx\]

\[\int\limits_0^1 \frac{1}{2 x^2 + x + 1} dx\]

\[\int\limits_0^{2\pi} e^x \cos\left( \frac{\pi}{4} + \frac{x}{2} \right) dx\]

\[\int\limits_2^4 \frac{x}{x^2 + 1} dx\]

\[\int\limits_0^{\pi/2} \frac{x + \sin x}{1 + \cos x} dx\]

\[\int\limits_1^2 \frac{1}{x \left( 1 + \log x \right)^2} dx\]

\[\int_0^\frac{1}{2} \frac{1}{\left( 1 + x^2 \right)\sqrt{1 - x^2}}dx\]

Evaluate each of the following integral:

\[\int_a^b \frac{x^\frac{1}{n}}{x^\frac{1}{n} + \left( a + b - x \right)^\frac{1}{n}}dx, n \in N, n \geq 2\]


\[\int\limits_0^{\pi/2} \frac{1}{1 + \cot x} dx\]

\[\int\limits_0^\pi \log\left( 1 - \cos x \right) dx\]

Evaluate the following integral:

\[\int_{- 1}^1 \left| xcos\pi x \right|dx\]

 


Prove that:

\[\int_0^\pi xf\left( \sin x \right)dx = \frac{\pi}{2} \int_0^\pi f\left( \sin x \right)dx\]

\[\int\limits_{- 1}^1 \left( x + 3 \right) dx\]

\[\int\limits_0^5 \left( x + 1 \right) dx\]

\[\int\limits_0^2 e^x dx\]

\[\int\limits_0^5 \left( x + 1 \right) dx\]

\[\int\limits_2^3 x^2 dx\]

\[\int\limits_1^3 \left( 2 x^2 + 5x \right) dx\]

Solve each of the following integral:

\[\int_2^4 \frac{x}{x^2 + 1}dx\]

Write the coefficient abc of which the value of the integral

\[\int\limits_{- 3}^3 \left( a x^2 + bx + c \right) dx\] is independent.

\[\int\limits_0^2 \left[ x \right] dx .\]

The value of \[\int\limits_0^\pi \frac{x \tan x}{\sec x + \cos x} dx\] is __________ .


The value of \[\int\limits_0^{2\pi} \sqrt{1 + \sin\frac{x}{2}}dx\] is 


If f (a + b − x) = f (x), then \[\int\limits_a^b\] x f (x) dx is equal to


`int_0^(2a)f(x)dx`


\[\int\limits_{\pi/3}^{\pi/2} \frac{\sqrt{1 + \cos x}}{\left( 1 - \cos x \right)^{5/2}} dx\]


\[\int\limits_0^{\pi/2} x^2 \cos 2x dx\]


\[\int\limits_0^{\pi/2} \left| \sin x - \cos x \right| dx\]


\[\int\limits_{- 1/2}^{1/2} \cos x \log\left( \frac{1 + x}{1 - x} \right) dx\]


Find : `∫_a^b logx/x` dx


Evaluate the following using properties of definite integral:

`int_(-1)^1 log ((2 - x)/(2 + x))  "d"x`


Evaluate the following using properties of definite integral:

`int_0^1 x/((1 - x)^(3/4))  "d"x`


Choose the correct alternative:

`Γ(3/2)`


Find: `int logx/(1 + log x)^2 dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×