Advertisements
Advertisements
प्रश्न
उत्तर
\[Let\ I = \int_0^\frac{\pi}{2} \left( a^2 \cos^2 x + b^2 \sin^2 x \right) d x . Then, \]
\[ I = \int_0^\frac{\pi}{2} \left( a^2 \cos^2 x + b^2 \left( 1 - \cos^2 x \right) \right) d x\]
\[ \Rightarrow I = \int_0^\frac{\pi}{2} \left( b^2 + \left( a^2 - b^2 \right) \cos^2 x \right) dx\]
\[ \Rightarrow I = \int_0^\frac{\pi}{2} \left( b^2 + \frac{\left( a^2 - b^2 \right)\left( 1 + \cos 2x \right)}{2} \right)dx\]
\[ \Rightarrow I = \left[ b^2 x + \frac{a^2 - b^2}{2}\left( x + \frac{\sin 2x}{2} \right) \right]_0^\frac{\pi}{2} \]
\[ \Rightarrow I = \frac{b^2 \pi}{2} + \frac{a^2 - b^2}{2}\frac{\pi}{2} + 0\]
\[ \Rightarrow I = \frac{\pi}{4}\left( a^2 + b^2 \right)\]
APPEARS IN
संबंधित प्रश्न
Evaluate the following definite integrals:
Evaluate each of the following integral:
\[\int_a^b \frac{x^\frac{1}{n}}{x^\frac{1}{n} + \left( a + b - x \right)^\frac{1}{n}}dx, n \in N, n \geq 2\]
Evaluate the following integral:
Prove that:
Solve each of the following integral:
Write the coefficient a, b, c of which the value of the integral
The value of \[\int\limits_0^\pi \frac{x \tan x}{\sec x + \cos x} dx\] is __________ .
The value of \[\int\limits_0^{2\pi} \sqrt{1 + \sin\frac{x}{2}}dx\] is
If f (a + b − x) = f (x), then \[\int\limits_a^b\] x f (x) dx is equal to
`int_0^(2a)f(x)dx`
\[\int\limits_{\pi/3}^{\pi/2} \frac{\sqrt{1 + \cos x}}{\left( 1 - \cos x \right)^{5/2}} dx\]
\[\int\limits_0^{\pi/2} x^2 \cos 2x dx\]
\[\int\limits_0^{\pi/2} \left| \sin x - \cos x \right| dx\]
\[\int\limits_{- 1/2}^{1/2} \cos x \log\left( \frac{1 + x}{1 - x} \right) dx\]
Find : `∫_a^b logx/x` dx
Evaluate the following using properties of definite integral:
`int_(-1)^1 log ((2 - x)/(2 + x)) "d"x`
Evaluate the following using properties of definite integral:
`int_0^1 x/((1 - x)^(3/4)) "d"x`
Choose the correct alternative:
`Γ(3/2)`
Find: `int logx/(1 + log x)^2 dx`