Advertisements
Advertisements
प्रश्न
\[\int\limits_0^{\pi/2} \left| \sin x - \cos x \right| dx\]
उत्तर
\[\int_0^\frac{\pi}{2} \left| \sin x - \cos x \right| d x\]
\[ = \sqrt{2} \int_0^\frac{\pi}{2} \left| \sin x\frac{1}{\sqrt{2}} - \cos x\frac{1}{\sqrt{2}} \right| d x\]
\[ = \sqrt{2} \int_0^\frac{\pi}{2} \left| \sin x \cos\frac{\pi}{4} - \cos x \sin\frac{\pi}{4} \right| d x\]
\[ = \sqrt{2} \int_0^\frac{\pi}{2} \left| \sin\left( x - \frac{\pi}{4} \right) \right| d x\]
\[We have, \]
\[\left| \sin\left( x - \frac{\pi}{4} \right) \right| = \begin{cases} - \sin\left( x - \frac{\pi}{4} \right),& 0 \leq x \leq \frac{\pi}{4}\\ \sin\left( x - \frac{\pi}{4} \right),& \frac{\pi}{4} \leq x \leq \frac{\pi}{2}\end{cases}\]
\[ \therefore \int_0^\frac{\pi}{2} \left| \sin x - \cos x \right| d x = \sqrt{2} \int_0^\frac{\pi}{4} - \sin\left( x - \frac{\pi}{4} \right) d x + \sqrt{2} \int_\frac{\pi}{4}^\frac{\pi}{2} \sin\left( x - \frac{\pi}{4} \right) d x\]
\[ = \sqrt{2} \left[ \cos\left( x - \frac{\pi}{4} \right) \right]_0^\frac{\pi}{4} - \sqrt{2} \left[ \cos\left( x - \frac{\pi}{4} \right) \right]_\frac{\pi}{4}^\frac{\pi}{2} \]
\[ = \sqrt{2}\left[ \cos \left( 0 \right) - \cos\left( - \frac{\pi}{4} \right) \right] - \sqrt{2}\left[ \cos\left( \frac{\pi}{4} \right) - \cos \left( 0 \right) \right]\]
\[ = \sqrt{2}\left( 1 - \frac{1}{\sqrt{2}} - \frac{1}{\sqrt{2}} + 1 \right)\]
\[ = \sqrt{2}\left( 2 - \frac{2}{\sqrt{2}} \right)\]
\[ = 2\sqrt{2} - 2\]
\[ = 2\left( \sqrt{2} - 1 \right)\]
APPEARS IN
संबंधित प्रश्न
\[\int\limits_{\pi/4}^{\pi/2} \cot x\ dx\]
If f(x) is a continuous function defined on [−a, a], then prove that
Evaluate each of the following integral:
If \[\int_0^a \frac{1}{4 + x^2}dx = \frac{\pi}{8}\] , find the value of a.
Evaluate: \[\int\limits_{- \pi/2}^{\pi/2} \frac{\cos x}{1 + e^x}dx\] .
\[\int\limits_0^{\pi/3} \frac{\cos x}{3 + 4 \sin x} dx\]
\[\int\limits_0^{\pi/2} \frac{\sin^2 x}{\left( 1 + \cos x \right)^2} dx\]
\[\int\limits_0^{\pi/4} \cos^4 x \sin^3 x dx\]
\[\int\limits_{\pi/3}^{\pi/2} \frac{\sqrt{1 + \cos x}}{\left( 1 - \cos x \right)^{5/2}} dx\]
\[\int\limits_0^\pi \frac{x \sin x}{1 + \cos^2 x} dx\]
\[\int\limits_0^{\pi/2} \frac{\cos^2 x}{\sin x + \cos x} dx\]
Find : `∫_a^b logx/x` dx
Evaluate the following:
f(x) = `{{:("c"x",", 0 < x < 1),(0",", "otherwise"):}` Find 'c" if `int_0^1 "f"(x) "d"x` = 2
Evaluate the following using properties of definite integral:
`int_(- pi/2)^(pi/2) sin^2theta "d"theta`
Evaluate the following:
`int_0^oo "e"^(-mx) x^6 "d"x`
Choose the correct alternative:
If f(x) is a continuous function and a < c < b, then `int_"a"^"c" f(x) "d"x + int_"c"^"b" f(x) "d"x` is
Choose the correct alternative:
`int_0^oo x^4"e"^-x "d"x` is
`int (x + 3)/(x + 4)^2 "e"^x "d"x` = ______.
The value of `int_2^3 x/(x^2 + 1)`dx is ______.