Advertisements
Advertisements
प्रश्न
उत्तर
\[Let I = \int_0^5 \frac{\sqrt[4]{x + 4}}{\sqrt[4]{x + 4} - \sqrt[4]{9 - x}} d x......................(1)\]
\[I = \int_0^5 \frac{\sqrt[4]{9 - x}}{\sqrt[4]{9 - x} - \sqrt[4]{x + 4}}dx ...........................\left[\text{Using }\int_0^a f\left( x \right)dx = \int_0^a f\left( a - x \right)dx \right]\]
\[I = - \int_0^5 \frac{\sqrt[4]{9 - x}}{\sqrt[4]{x + 4} - \sqrt[4]{9 - x}}dx ...................(2)\]
\[\text{Adding (1) and (2)}\]
\[2I = \int_0^5 \frac{\sqrt[4]{x + 4}}{\sqrt[4]{x + 4} - \sqrt[4]{9 - x}} - \frac{\sqrt[4]{9 - x}}{\sqrt[4]{x + 4} - \sqrt[4]{9 - x}}dx \]
\[ = \int_0^5 \frac{\sqrt[4]{x + 4} - \sqrt[4]{9 - x}}{\sqrt[4]{x + 4} - \sqrt[4]{9 - x}}dx\]
\[ = \int_0^5 dx\]
\[ = \left[ x \right]_0^5 \]
\[ = 5\]
\[Hence\ I = \frac{5}{2}\]
APPEARS IN
संबंधित प्रश्न
\[\int\limits_0^{( \pi )^{2/3}} \sqrt{x} \cos^2 x^{3/2} dx\]
If \[\int_0^a \frac{1}{4 + x^2}dx = \frac{\pi}{8}\] , find the value of a.
Evaluate :
The value of \[\int\limits_0^\pi \frac{x \tan x}{\sec x + \cos x} dx\] is __________ .
\[\int\limits_0^1 \log\left( 1 + x \right) dx\]
\[\int\limits_0^{\pi/4} e^x \sin x dx\]
\[\int\limits_2^3 e^{- x} dx\]
Using second fundamental theorem, evaluate the following:
`int_(-1)^1 (2x + 3)/(x^2 + 3x + 7) "d"x`
Choose the correct alternative:
Using the factorial representation of the gamma function, which of the following is the solution for the gamma function Γ(n) when n = 8 is
If x = `int_0^y "dt"/sqrt(1 + 9"t"^2)` and `("d"^2y)/("d"x^2)` = ay, then a equal to ______.
Evaluate the following:
`int ((x^2 + 2))/(x + 1) "d"x`