Advertisements
Advertisements
प्रश्न
उत्तर
\[Let\ I = \int_0^1 \log\left( \frac{1}{x} - 1 \right) d x ...............(1)\]
\[ = \int_0^1 \log\left( \frac{1}{1 - x} - 1 \right) d x ...............\left[\text{Using }\int_0^a f(x) dx = \int_0^a f(a - x) dx \right]\]
\[ I = \int_0^1 \log\left( \frac{x}{1 - x} \right) dx ...............(2)\]
\[\text{Adding (1) and (2)}\]
\[2I = \int_0^1 \log\left( \frac{1 - x}{x} \right) + \log\left( \frac{x}{1 - x} \right) dx\]
\[ = \int_0^1 \log\left( \frac{1 - x}{x} \times \frac{x}{1 - x} \right) dx\]
\[ = \int_0^1 \log1 dx \]
\[ = 0\]
\[Hence\ I = 0\]
APPEARS IN
संबंधित प्रश्न
Write the coefficient a, b, c of which the value of the integral
\[\int\limits_0^{\pi/2} \frac{1}{2 + \cos x} dx\] equals
The value of \[\int\limits_0^{\pi/2} \cos x\ e^{\sin x}\ dx\] is
The value of \[\int\limits_{- \pi/2}^{\pi/2} \left( x^3 + x \cos x + \tan^5 x + 1 \right) dx, \] is
\[\int\limits_{\pi/3}^{\pi/2} \frac{\sqrt{1 + \cos x}}{\left( 1 - \cos x \right)^{5/2}} dx\]
\[\int\limits_0^1 \left| \sin 2\pi x \right| dx\]
Using second fundamental theorem, evaluate the following:
`int_0^1 "e"^(2x) "d"x`
Using second fundamental theorem, evaluate the following:
`int_1^2 (x "d"x)/(x^2 + 1)`
Using second fundamental theorem, evaluate the following:
`int_0^1 x"e"^(x^2) "d"x`
Using second fundamental theorem, evaluate the following:
`int_1^2 (x - 1)/x^2 "d"x`
Choose the correct alternative:
Γ(n) is
Evaluate `int sqrt((1 + x)/(1 - x)) "d"x`, x ≠1
Verify the following:
`int (2x + 3)/(x^2 + 3x) "d"x = log|x^2 + 3x| + "C"`
Given `int "e"^"x" (("x" - 1)/("x"^2)) "dx" = "e"^"x" "f"("x") + "c"`. Then f(x) satisfying the equation is:
The value of `int_2^3 x/(x^2 + 1)`dx is ______.