Advertisements
Advertisements
प्रश्न
Write the coefficient a, b, c of which the value of the integral
उत्तर
\[\int_{- 3}^3 \left( a x^2 + bx + c \right) d x\]
\[ = \left[ a\frac{x^3}{3} + b\frac{x^2}{2} + cx \right]_{- 3}^3 \]
\[ = 9a + \frac{9}{2}b + 3c + 9a - \frac{9}{2}b + 3c\]
\[ = 18a + 6c\]
Hence, the given integral is independent of b
APPEARS IN
संबंधित प्रश्न
If f is an integrable function, show that
If \[\int_0^a \frac{1}{4 + x^2}dx = \frac{\pi}{8}\] , find the value of a.
\[\int\limits_0^1 \left\{ x \right\} dx,\] where {x} denotes the fractional part of x.
The value of the integral \[\int\limits_0^{\pi/2} \frac{\sqrt{\cos x}}{\sqrt{\cos x} + \sqrt{\sin x}} dx\] is
\[\int\limits_0^\infty \frac{1}{1 + e^x} dx\] equals
\[\int\limits_0^{\pi/2} \frac{1}{2 + \cos x} dx\] equals
\[\int\limits_0^4 x\sqrt{4 - x} dx\]
\[\int\limits_0^1 \cos^{- 1} x dx\]
\[\int\limits_0^{\pi/4} \cos^4 x \sin^3 x dx\]
\[\int\limits_0^{\pi/2} \frac{x}{\sin^2 x + \cos^2 x} dx\]
\[\int\limits_0^{\pi/2} \frac{1}{2 \cos x + 4 \sin x} dx\]
\[\int\limits_{\pi/6}^{\pi/2} \frac{\ cosec x \cot x}{1 + {cosec}^2 x} dx\]
\[\int\limits_0^{\pi/2} \frac{dx}{4 \cos x + 2 \sin x}dx\]
If f(x) = `{{:(x^2"e"^(-2x)",", x ≥ 0),(0",", "otherwise"):}`, then evaluate `int_0^oo "f"(x) "d"x`
Evaluate the following integrals as the limit of the sum:
`int_1^3 (2x + 3) "d"x`
Choose the correct alternative:
`int_(-1)^1 x^3 "e"^(x^4) "d"x` is
Choose the correct alternative:
`Γ(3/2)`
Find `int sqrt(10 - 4x + 4x^2) "d"x`