मराठी

3 ∫ 0 1 X 2 + 9 D X . - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\limits_0^3 \frac{1}{x^2 + 9} dx .\]

उत्तर

\[\int_0^3 \frac{1}{x^2 + 9} d x\]

\[ = \int_0^3 \frac{1}{x^2 + 3^2} d x\]

\[ = \frac{1}{3} \left[ \tan^{- 1} \frac{x}{3} \right]_0^3 \]

\[ = \frac{1}{3}\left( \tan^{- 1} 1 - \tan^{- 1} 0 \right)\]

\[ = \frac{1}{3}\left( \frac{\pi}{4} - 0 \right)\]

\[ = \frac{\pi}{12}\]

shaalaa.com
Definite Integrals
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 20: Definite Integrals - Very Short Answers [पृष्ठ ११५]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 20 Definite Integrals
Very Short Answers | Q 12 | पृष्ठ ११५

संबंधित प्रश्‍न

\[\int\limits_0^\infty \frac{1}{a^2 + b^2 x^2} dx\]

\[\int\limits_0^\pi \frac{1}{1 + \sin x} dx\]

\[\int\limits_0^{\pi/2} x^2 \cos\ 2x\ dx\]

\[\int\limits_0^{2\pi} e^{x/2} \sin\left( \frac{x}{2} + \frac{\pi}{4} \right) dx\]

\[\int\limits_0^1 x e^{x^2} dx\]

\[\int\limits_0^{\pi/3} \frac{\cos x}{3 + 4 \sin x} dx\]

\[\int\limits_0^{\pi/2} \frac{x + \sin x}{1 + \cos x} dx\]

\[\int_0^\frac{\pi}{2} \sqrt{\cos x - \cos^3 x}\left( \sec^2 x - 1 \right) \cos^2 xdx\]

\[\int_{- 2}^2 x e^\left| x \right| dx\]

\[\int_{- \frac{\pi}{2}}^\pi \sin^{- 1} \left( \sin x \right)dx\]

\[\int\limits_0^\pi x \log \sin x\ dx\]

\[\int\limits_2^3 \left( 2 x^2 + 1 \right) dx\]

\[\int\limits_a^b \cos\ x\ dx\]

\[\int\limits_0^2 \left( x^2 + 2x + 1 \right) dx\]

\[\int\limits_a^b x\ dx\]

\[\int\limits_0^1 \frac{1}{x^2 + 1} dx\]

\[\int\limits_0^{\pi/2} \sqrt{1 - \cos 2x}\ dx .\]

\[\int\limits_0^2 \sqrt{4 - x^2} dx\]

\[\int\limits_0^1 \left\{ x \right\} dx,\] where {x} denotes the fractional part of x.  

 

The value of \[\int\limits_0^{\pi/2} \cos x\ e^{\sin x}\ dx\] is

 


\[\int\limits_{\pi/6}^{\pi/3} \frac{1}{\sin 2x} dx\]  is equal to

\[\int\limits_0^1 \frac{d}{dx}\left\{ \sin^{- 1} \left( \frac{2x}{1 + x^2} \right) \right\} dx\] is equal to

Evaluate : \[\int\limits_0^{2\pi} \cos^5 x dx\] .


\[\int\limits_0^1 \cos^{- 1} x dx\]


\[\int\limits_0^1 \tan^{- 1} \left( \frac{2x}{1 - x^2} \right) dx\]


\[\int\limits_0^{1/\sqrt{3}} \tan^{- 1} \left( \frac{3x - x^3}{1 - 3 x^2} \right) dx\]


\[\int\limits_0^\pi \sin^3 x\left( 1 + 2 \cos x \right) \left( 1 + \cos x \right)^2 dx\]


\[\int\limits_0^1 \sqrt{\frac{1 - x}{1 + x}} dx\]


\[\int\limits_1^2 \frac{1}{x^2} e^{- 1/x} dx\]


\[\int\limits_0^1 x \left( \tan^{- 1} x \right)^2 dx\]


\[\int\limits_0^{2\pi} \cos^7 x dx\]


\[\int\limits_0^\pi \frac{dx}{6 - \cos x}dx\]


\[\int\limits_0^4 x dx\]


\[\int\limits_{- 1}^1 e^{2x} dx\]


\[\int\limits_2^3 e^{- x} dx\]


Using second fundamental theorem, evaluate the following:

`int_0^3 ("e"^x "d"x)/(1 + "e"^x)`


Using second fundamental theorem, evaluate the following:

`int_(-1)^1 (2x + 3)/(x^2 + 3x + 7)  "d"x`


Choose the correct alternative:

`int_0^1 (2x + 1)  "d"x` is


Choose the correct alternative:

Using the factorial representation of the gamma function, which of the following is the solution for the gamma function Γ(n) when n = 8 is


Find: `int logx/(1 + log x)^2 dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×