Advertisements
Advertisements
प्रश्न
उत्तर
\[\int_0^3 \frac{1}{x^2 + 9} d x\]
\[ = \int_0^3 \frac{1}{x^2 + 3^2} d x\]
\[ = \frac{1}{3} \left[ \tan^{- 1} \frac{x}{3} \right]_0^3 \]
\[ = \frac{1}{3}\left( \tan^{- 1} 1 - \tan^{- 1} 0 \right)\]
\[ = \frac{1}{3}\left( \frac{\pi}{4} - 0 \right)\]
\[ = \frac{\pi}{12}\]
APPEARS IN
संबंधित प्रश्न
\[\int\limits_0^1 \left\{ x \right\} dx,\] where {x} denotes the fractional part of x.
The value of \[\int\limits_0^{\pi/2} \cos x\ e^{\sin x}\ dx\] is
Evaluate : \[\int\limits_0^{2\pi} \cos^5 x dx\] .
\[\int\limits_0^1 \cos^{- 1} x dx\]
\[\int\limits_0^1 \tan^{- 1} \left( \frac{2x}{1 - x^2} \right) dx\]
\[\int\limits_0^{1/\sqrt{3}} \tan^{- 1} \left( \frac{3x - x^3}{1 - 3 x^2} \right) dx\]
\[\int\limits_0^\pi \sin^3 x\left( 1 + 2 \cos x \right) \left( 1 + \cos x \right)^2 dx\]
\[\int\limits_0^1 \sqrt{\frac{1 - x}{1 + x}} dx\]
\[\int\limits_1^2 \frac{1}{x^2} e^{- 1/x} dx\]
\[\int\limits_0^1 x \left( \tan^{- 1} x \right)^2 dx\]
\[\int\limits_0^{2\pi} \cos^7 x dx\]
\[\int\limits_0^\pi \frac{dx}{6 - \cos x}dx\]
\[\int\limits_0^4 x dx\]
\[\int\limits_{- 1}^1 e^{2x} dx\]
\[\int\limits_2^3 e^{- x} dx\]
Using second fundamental theorem, evaluate the following:
`int_0^3 ("e"^x "d"x)/(1 + "e"^x)`
Using second fundamental theorem, evaluate the following:
`int_(-1)^1 (2x + 3)/(x^2 + 3x + 7) "d"x`
Choose the correct alternative:
`int_0^1 (2x + 1) "d"x` is
Choose the correct alternative:
Using the factorial representation of the gamma function, which of the following is the solution for the gamma function Γ(n) when n = 8 is
Find: `int logx/(1 + log x)^2 dx`