Advertisements
Advertisements
प्रश्न
उत्तर
\[Let\ I = \int_0^{2\pi} e^\frac{x}{2} \sin \left( \frac{x}{2} + \frac{\pi}{4} \right) d x . Then, \]
\[\text{Integrating by parts}\]
\[I = \left[ - 2 e^\frac{x}{2} \cos \left( \frac{x}{2} + \frac{\pi}{4} \right) \right]_0^{2\pi} - \int_0^{2\pi} - \frac{2}{2} e^\frac{x}{2} \cos \left( \frac{x}{2} + \frac{\pi}{4} \right) dx\]
\[\text{Again, integrating second term by parts}\]
\[ \Rightarrow I = \left[ - 2 e^\frac{x}{2} \cos \left( \frac{x}{2} + \frac{\pi}{4} \right) \right]_0^{2\pi} + \left\{ \left[ 2 e^\frac{x}{2} \sin \left( \frac{x}{2} + \frac{\pi}{4} \right) \right]_0^{2\pi} - \int_0^{2\pi} \frac{2}{2} e^\frac{x}{2} \sin \left( \frac{x}{2} + \frac{\pi}{4} \right) d x \right\}\]
\[ \Rightarrow I = \left[ - 2 e^\frac{x}{2} \cos \left( \frac{x}{2} + \frac{\pi}{4} \right) \right]_0^{2\pi} + \left[ 2 e^\frac{x}{2} \sin \left( \frac{x}{2} + \frac{\pi}{4} \right) \right]_0^{2\pi} - I\]
\[ \Rightarrow 2I = \frac{2}{\sqrt{2}} e^\pi + \frac{2}{\sqrt{2}} - \frac{2}{\sqrt{2}} e^\pi - \frac{2}{\sqrt{2}} = 0\]
\[ \Rightarrow I = 0\]
APPEARS IN
संबंधित प्रश्न
Evaluate the following definite integrals:
\[\int\limits_1^4 f\left( x \right) dx, where f\left( x \right) = \begin{cases}7x + 3 & , & \text{if }1 \leq x \leq 3 \\ 8x & , & \text{if }3 \leq x \leq 4\end{cases}\]
Evaluate each of the following integral:
\[\int_a^b \frac{x^\frac{1}{n}}{x^\frac{1}{n} + \left( a + b - x \right)^\frac{1}{n}}dx, n \in N, n \geq 2\]
\[\int_0^\frac{\pi^2}{4} \frac{\sin\sqrt{x}}{\sqrt{x}} dx\] equals
If \[\int\limits_0^a \frac{1}{1 + 4 x^2} dx = \frac{\pi}{8},\] then a equals
Evaluate : \[\int\limits_0^\pi \frac{x}{1 + \sin \alpha \sin x}dx\] .
\[\int\limits_0^{\pi/3} \frac{\cos x}{3 + 4 \sin x} dx\]
\[\int\limits_0^\infty \frac{x}{\left( 1 + x \right)\left( 1 + x^2 \right)} dx\]
\[\int\limits_0^{\pi/2} x^2 \cos 2x dx\]
\[\int\limits_0^1 \left| 2x - 1 \right| dx\]
\[\int\limits_0^\pi \frac{x}{a^2 \cos^2 x + b^2 \sin^2 x} dx\]
\[\int\limits_0^{15} \left[ x^2 \right] dx\]
Evaluate the following using properties of definite integral:
`int_(- pi/4)^(pi/4) x^3 cos^3 x "d"x`
Choose the correct alternative:
If f(x) is a continuous function and a < c < b, then `int_"a"^"c" f(x) "d"x + int_"c"^"b" f(x) "d"x` is
Evaluate `int (x^2"d"x)/(x^4 + x^2 - 2)`
If x = `int_0^y "dt"/sqrt(1 + 9"t"^2)` and `("d"^2y)/("d"x^2)` = ay, then a equal to ______.