Advertisements
Advertisements
प्रश्न
उत्तर
\[Let\ I = \int_0^\frac{\pi}{4} x^2 \sin\ x\ d x . Then, \]
\[\text{Integrating by parts}\]
\[I = \left[ - x^2 \cos x \right]_0^\frac{\pi}{4} - \int_0^\frac{\pi}{4} - 2x \cos\ x\ d\ x\]
\[ \Rightarrow I = \left[ - x^2 \cos x \right]_0^\frac{\pi}{4} + \left[ 2x \sin x \right]_0^\frac{\pi}{4} - \int_0^\frac{\pi}{4} 2 \sin\ x\ dx\]
\[ \Rightarrow I = \left[ - x^2 \cos x \right]_0^\frac{\pi}{4} + \left[ 2x \sin x \right]_0^\frac{\pi}{4} + \left[ 2 \cos x \right]_0^\frac{\pi}{4} \]
\[ \Rightarrow I = \frac{- \pi^2}{16\sqrt{2}} + \frac{\pi}{2\sqrt{2}} + \frac{2}{\sqrt{2}} - 2\]
\[ \Rightarrow I = \sqrt{2} + \frac{\pi}{2\sqrt{2}} - \frac{\pi^2}{16\sqrt{2}} - 2\]
APPEARS IN
संबंधित प्रश्न
\[\int\limits_1^4 f\left( x \right) dx, where f\left( x \right) = \begin{cases}7x + 3 & , & \text{if }1 \leq x \leq 3 \\ 8x & , & \text{if }3 \leq x \leq 4\end{cases}\]
Evaluate each of the following integral:
\[\int\limits_0^1 \left\{ x \right\} dx,\] where {x} denotes the fractional part of x.
\[\int\limits_0^\pi \frac{1}{1 + \sin x} dx\] equals
\[\int\limits_0^{\pi/2} \frac{1}{2 + \cos x} dx\] equals
The value of \[\int\limits_0^{\pi/2} \cos x\ e^{\sin x}\ dx\] is
Evaluate : \[\int\limits_0^\pi/4 \frac{\sin x + \cos x}{16 + 9 \sin 2x}dx\] .
\[\int\limits_0^\pi \frac{x \sin x}{1 + \cos^2 x} dx\]
\[\int\limits_{- 1}^1 e^{2x} dx\]
Choose the correct alternative:
`int_(-1)^1 x^3 "e"^(x^4) "d"x` is
Choose the correct alternative:
If f(x) is a continuous function and a < c < b, then `int_"a"^"c" f(x) "d"x + int_"c"^"b" f(x) "d"x` is
`int "e"^x ((1 - x)/(1 + x^2))^2 "d"x` is equal to ______.
`int x^9/(4x^2 + 1)^6 "d"x` is equal to ______.