Advertisements
Advertisements
प्रश्न
उत्तर
\[Let\ I = \int_0^1 \frac{2x}{1 + x^4} d x . \]
\[Let\ x^2 = t . Then, 2x\ dx\ = dt\]
\[When\ x = 0, t = 0\ and\ x\ = 1, t = 1\]
\[ \therefore I = \int_0^1 \frac{2x}{1 + x^4} d x\]
\[ \Rightarrow I = \int_0^1 \frac{1}{1 + t^2} d t\]
\[ \Rightarrow I = \left[ \tan^{- 1} t \right]_0^1 \]
\[ \Rightarrow I = \tan^{- 1} 1 - \tan^{- 1} 0\]
\[ \Rightarrow I = \frac{\pi}{4}\]
\[\]
APPEARS IN
संबंधित प्रश्न
If \[\int\limits_0^1 \left( 3 x^2 + 2x + k \right) dx = 0,\] find the value of k.
If \[\left[ \cdot \right] and \left\{ \cdot \right\}\] denote respectively the greatest integer and fractional part functions respectively, evaluate the following integrals:
`int_0^1 sqrt((1 - "x")/(1 + "x")) "dx"`
Evaluate : \[\int e^{2x} \cdot \sin \left( 3x + 1 \right) dx\] .
\[\int\limits_0^1 \tan^{- 1} x dx\]
\[\int\limits_1^3 \left| x^2 - 2x \right| dx\]
\[\int\limits_0^\pi x \sin x \cos^4 x dx\]
\[\int\limits_2^3 \frac{\sqrt{x}}{\sqrt{5 - x} + \sqrt{x}} dx\]
\[\int\limits_0^1 \cot^{- 1} \left( 1 - x + x^2 \right) dx\]
\[\int\limits_{\pi/6}^{\pi/2} \frac{\ cosec x \cot x}{1 + {cosec}^2 x} dx\]
Using second fundamental theorem, evaluate the following:
`int_0^3 ("e"^x "d"x)/(1 + "e"^x)`
Evaluate the following using properties of definite integral:
`int_0^(i/2) (sin^7x)/(sin^7x + cos^7x) "d"x`
Evaluate the following:
`int_0^oo "e"^(-mx) x^6 "d"x`
Choose the correct alternative:
`int_0^oo x^4"e"^-x "d"x` is
Evaluate `int (3"a"x)/("b"^2 + "c"^2x^2) "d"x`
Find: `int logx/(1 + log x)^2 dx`