Advertisements
Advertisements
प्रश्न
Evaluate : \[\int e^{2x} \cdot \sin \left( 3x + 1 \right) dx\] .
उत्तर
\[I = \int e^{2x} \sin\left( 3x + 1 \right)dx\]
Applying integration by parts, taking
\[\sin\left( 3x + 1 \right)\] as first function and \[e^{2x}\]as second function, we get
\[I = \sin\left( 3x + 1 \right)\int e^{2x} dx - \int\left[ \frac{d}{dx}\sin\left( 3x + 1 \right)\int e^{2x} dx \right]dx\]
\[ \Rightarrow I = \sin\left( 3x + 1 \right)\frac{e^{2x}}{2} - \int\left[ 3\cos\left( 3x + 1 \right)\frac{e^{2x}}{2} \right]dx\]
\[ \Rightarrow I = \sin\left( 3x + 1 \right)\frac{e^{2x}}{2} - \frac{3}{2}\int e^{2x} \cos\left( 3x + 1 \right)dx\]
Again applying integration by parts, taking
\[I = \sin\left( 3x + 1 \right)\frac{e^{2x}}{2} - \frac{3}{2}\left\{ \cos\left( 3x + 1 \right)\int e^{2x} dx - \int\left[ \frac{d}{dx}\cos\left( 3x + 1 \right)\int e^{2x} dx \right]dx \right\}\]
\[ \Rightarrow I = \sin\left( 3x + 1 \right)\frac{e^{2x}}{2} - \frac{3}{2}\left\{ \cos\left( 3x + 1 \right)\frac{e^{2x}}{2} - \int\left[ - 3\sin\left( 3x + 1 \right)\frac{e^{2x}}{2} \right]dx \right\}\]
\[ \Rightarrow I = \sin\left( 3x + 1 \right)\frac{e^{2x}}{2} - \frac{3}{2}\left[ \cos\left( 3x + 1 \right)\frac{e^{2x}}{2}dx + \frac{3}{2}\int e^{2x} \sin\left( 3x + 1 \right)dx \right]\]
\[ \Rightarrow I = \sin\left( 3x + 1 \right)\frac{e^{2x}}{2} - \frac{3}{4}\cos\left( 3x + 1 \right) e^{2x} - \frac{9}{4}I + C\]
\[ \Rightarrow I + \frac{9}{4}I = \sin\left( 3x + 1 \right)\frac{e^{2x}}{2} - \frac{3}{4}\cos\left( 3x + 1 \right) e^{2x} + C\]
\[ \Rightarrow \frac{13}{4}I = \frac{e^{2x}}{4}\left[ 2\sin\left( 3x + 1 \right) - 3\cos\left( 3x + 1 \right) \right] + C\]
\[ \Rightarrow I = \frac{e^{2x}}{13}\left[ 2\sin\left( 3x + 1 \right) - 3\cos\left( 3x + 1 \right) \right] + K, \text { where } K = \frac{4}{13}C\]
APPEARS IN
संबंधित प्रश्न
If \[\int_0^a \frac{1}{4 + x^2}dx = \frac{\pi}{8}\] , find the value of a.
\[\int\limits_0^1 x \left( \tan^{- 1} x \right)^2 dx\]
\[\int\limits_0^\pi \frac{x}{a^2 - \cos^2 x} dx, a > 1\]
\[\int\limits_0^{\pi/2} \frac{1}{2 \cos x + 4 \sin x} dx\]
Prove that `int_a^b ƒ ("x") d"x" = int_a^bƒ(a + b - "x") d"x" and "hence evaluate" int_(π/6)^(π/3) (d"x")/(1+sqrt(tan "x")`
Evaluate the following using properties of definite integral:
`int_0^1 x/((1 - x)^(3/4)) "d"x`
Evaluate the following integrals as the limit of the sum:
`int_1^3 (2x + 3) "d"x`
Choose the correct alternative:
`int_0^oo "e"^(-2x) "d"x` is
Choose the correct alternative:
If n > 0, then Γ(n) is