मराठी

Evaluate : \[\Int E^{2x} \Cdot \Sin \Left( 3x + 1 \Right) Dx\] . - Mathematics

Advertisements
Advertisements

प्रश्न

Evaluate : \[\int e^{2x} \cdot \sin \left( 3x + 1 \right) dx\] .

उत्तर

\[I = \int e^{2x} \sin\left( 3x + 1 \right)dx\]

Applying integration by parts, taking

\[\sin\left( 3x + 1 \right)\] as first function and \[e^{2x}\]as second function, we get

\[I = \sin\left( 3x + 1 \right)\int e^{2x} dx - \int\left[ \frac{d}{dx}\sin\left( 3x + 1 \right)\int e^{2x} dx \right]dx\]

\[ \Rightarrow I = \sin\left( 3x + 1 \right)\frac{e^{2x}}{2} - \int\left[ 3\cos\left( 3x + 1 \right)\frac{e^{2x}}{2} \right]dx\]

\[ \Rightarrow I = \sin\left( 3x + 1 \right)\frac{e^{2x}}{2} - \frac{3}{2}\int e^{2x} \cos\left( 3x + 1 \right)dx\]

Again applying integration by parts, taking

\[\cos\left( 3x + 1 \right)\] as first function and
\[e^{2x}\]as second function, we get

\[I = \sin\left( 3x + 1 \right)\frac{e^{2x}}{2} - \frac{3}{2}\left\{ \cos\left( 3x + 1 \right)\int e^{2x} dx - \int\left[ \frac{d}{dx}\cos\left( 3x + 1 \right)\int e^{2x} dx \right]dx \right\}\]

\[ \Rightarrow I = \sin\left( 3x + 1 \right)\frac{e^{2x}}{2} - \frac{3}{2}\left\{ \cos\left( 3x + 1 \right)\frac{e^{2x}}{2} - \int\left[ - 3\sin\left( 3x + 1 \right)\frac{e^{2x}}{2} \right]dx \right\}\]

\[ \Rightarrow I = \sin\left( 3x + 1 \right)\frac{e^{2x}}{2} - \frac{3}{2}\left[ \cos\left( 3x + 1 \right)\frac{e^{2x}}{2}dx + \frac{3}{2}\int e^{2x} \sin\left( 3x + 1 \right)dx \right]\]

\[ \Rightarrow I = \sin\left( 3x + 1 \right)\frac{e^{2x}}{2} - \frac{3}{4}\cos\left( 3x + 1 \right) e^{2x} - \frac{9}{4}I + C\]

\[ \Rightarrow I + \frac{9}{4}I = \sin\left( 3x + 1 \right)\frac{e^{2x}}{2} - \frac{3}{4}\cos\left( 3x + 1 \right) e^{2x} + C\]

\[ \Rightarrow \frac{13}{4}I = \frac{e^{2x}}{4}\left[ 2\sin\left( 3x + 1 \right) - 3\cos\left( 3x + 1 \right) \right] + C\]

\[ \Rightarrow I = \frac{e^{2x}}{13}\left[ 2\sin\left( 3x + 1 \right) - 3\cos\left( 3x + 1 \right) \right] + K, \text { where } K = \frac{4}{13}C\]

shaalaa.com
Definite Integrals
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
2014-2015 (March) Foreign Set 2

संबंधित प्रश्‍न

\[\int\limits_0^{\pi/6} \cos x \cos 2x\ dx\]

\[\int\limits_0^1 \sqrt{x \left( 1 - x \right)} dx\]

\[\int\limits_1^4 \frac{x^2 + x}{\sqrt{2x + 1}} dx\]

\[\int\limits_{\pi/2}^\pi e^x \left( \frac{1 - \sin x}{1 - \cos x} \right) dx\]

\[\int\limits_1^2 e^{2x} \left( \frac{1}{x} - \frac{1}{2 x^2} \right) dx\]

\[\int_0^\frac{\pi}{4} \left( a^2 \cos^2 x + b^2 \sin^2 x \right)dx\]

\[\int\limits_0^\pi \frac{1}{3 + 2 \sin x + \cos x} dx\]

\[\int\limits_0^{\pi/4} \left( \sqrt{\tan}x + \sqrt{\cot}x \right) dx\]

\[\int\limits_0^1 x \tan^{- 1} x\ dx\]

\[\int_{- 2}^2 x e^\left| x \right| dx\]

\[\int\limits_0^{\pi/2} \frac{1}{1 + \sqrt{\tan x}} dx\]

\[\int\limits_{- 1}^1 \log\left( \frac{2 - x}{2 + x} \right) dx\]

\[\int\limits_0^2 x\sqrt{2 - x} dx\]

\[\int\limits_0^2 \left( x^2 + 1 \right) dx\]

\[\int\limits_1^2 \left( x^2 - 1 \right) dx\]

\[\int\limits_{- \pi/2}^{\pi/2} x \cos^2 x\ dx .\]

 


\[\int\limits_0^{\pi/4} \tan^2 x\ dx .\]

If \[\int_0^a \frac{1}{4 + x^2}dx = \frac{\pi}{8}\] , find the value of a.


\[\int\limits_0^2 x\left[ x \right] dx .\]

\[\int\limits_0^1 2^{x - \left[ x \right]} dx\]

\[\int\limits_{- \pi/2}^{\pi/2} \sin\left| x \right| dx\]  is equal to

\[\int\limits_0^{\pi/2} \sin\ 2x\ \log\ \tan x\ dx\]  is equal to 

\[\int\limits_0^1 x \left( \tan^{- 1} x \right)^2 dx\]


\[\int\limits_0^\pi \frac{x}{a^2 - \cos^2 x} dx, a > 1\]


\[\int\limits_0^{\pi/2} \frac{1}{2 \cos x + 4 \sin x} dx\]


Prove that `int_a^b ƒ ("x") d"x" = int_a^bƒ(a + b - "x") d"x" and "hence evaluate" int_(π/6)^(π/3) (d"x")/(1+sqrt(tan "x")`


Evaluate the following using properties of definite integral:

`int_0^1 x/((1 - x)^(3/4))  "d"x`


Evaluate the following integrals as the limit of the sum:

`int_1^3 (2x + 3)  "d"x`


Choose the correct alternative:

`int_0^oo "e"^(-2x)  "d"x` is


Choose the correct alternative:

If n > 0, then Γ(n) is


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×