मराठी

Π / 2 ∫ 0 1 1 + √ Tan X D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\limits_0^{\pi/2} \frac{1}{1 + \sqrt{\tan x}} dx\]
बेरीज

उत्तर

\[Let\ I = \int_0^\frac{\pi}{2} \frac{1}{1 + \sqrt{\tan x}} d x ................(1)\]

\[ = \int_0^\frac{\pi}{2} \frac{1}{1 + \sqrt{\tan\left( \frac{\pi}{2} - x \right)}} dx.....................\left[\text{Using }\int_0^a f\left( x \right) dx = \int_0^a f\left( a - x \right) dx\right]\]

\[ = \int_0^\frac{\pi}{2} \frac{1}{1 + \sqrt{cotx}} d x .................(2)\]

\[\text{Adding (1) and (2) we get}\]

\[2I = \int_0^\frac{\pi}{2} \frac{1}{1 + \sqrt{\tan x}} + \frac{1}{1 + \sqrt{cotx}} d x\]

\[ = \int_0^\frac{\pi}{2} \frac{1 + \sqrt{cotx} + 1 + \sqrt{\tan x}}{\left( 1 + \sqrt{\tan x} \right) \left( 1 + \sqrt{cotx} \right)} dx\]

\[ = \int_0^\frac{\pi}{2} \frac{1 + \sqrt{cotx} + 1 + \sqrt{\tan x}}{1 + \sqrt{cotx} + \sqrt{\tan x} + \sqrt{\tan x \ cotx}} dx\]

\[ = \int_0^\frac{\pi}{2} \frac{2 + \sqrt{cotx} + \sqrt{\tan x}}{2 + \sqrt{cotx} + \sqrt{\tan x}} dx\]

\[ = \int_0^\frac{\pi}{2} dx \]

\[ = \left[ x \right]_0^\frac{\pi}{2} \]

\[ = \frac{\pi}{2}\]

\[Hence\ I = \frac{\pi}{4}\]

shaalaa.com
Definite Integrals
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 20: Definite Integrals - Exercise 20.5 [पृष्ठ ९४]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 20 Definite Integrals
Exercise 20.5 | Q 6 | पृष्ठ ९४

संबंधित प्रश्‍न

\[\int\limits_{- 2}^3 \frac{1}{x + 7} dx\]

\[\int\limits_0^1 \frac{x}{x + 1} dx\]

\[\int\limits_{\pi/4}^{\pi/2} \cot x\ dx\]


\[\int\limits_0^{\pi/2} x \cos\ x\ dx\]

\[\int\limits_{- 1}^1 \frac{1}{x^2 + 2x + 5} dx\]

\[\int\limits_0^{\pi/2} \sqrt{\sin \phi} \cos^5 \phi\ d\phi\]

 


\[\int_0^\frac{1}{2} \frac{x \sin^{- 1} x}{\sqrt{1 - x^2}}dx\]

\[\int\limits_0^1 \frac{24 x^3}{\left( 1 + x^2 \right)^4} dx\]

\[\int\limits_0^{\pi/2} \frac{\sin x \cos x}{\cos^2 x + 3 \cos x + 2} dx\]

\[\int_0^\frac{\pi}{2} \sqrt{\cos x - \cos^3 x}\left( \sec^2 x - 1 \right) \cos^2 xdx\]

\[\int\limits_0^9 f\left( x \right) dx, where f\left( x \right) \begin{cases}\sin x & , & 0 \leq x \leq \pi/2 \\ 1 & , & \pi/2 \leq x \leq 3 \\ e^{x - 3} & , & 3 \leq x \leq 9\end{cases}\]

Evaluate the following integral:

\[\int\limits_{- 2}^2 \left| 2x + 3 \right| dx\]

\[\int_{- 2}^2 x e^\left| x \right| dx\]

\[\int_{- \frac{\pi}{2}}^\frac{\pi}{2} \left( 2\sin\left| x \right| + \cos\left| x \right| \right)dx\]

\[\int_0^{2\pi} \cos^{- 1} \left( \cos x \right)dx\]

\[\int\limits_0^\infty \frac{\log x}{1 + x^2} dx\]

\[\int\limits_{- \pi/4}^{\pi/4} \sin^2 x\ dx\]

If f(x) is a continuous function defined on [−aa], then prove that 

\[\int\limits_{- a}^a f\left( x \right) dx = \int\limits_0^a \left\{ f\left( x \right) + f\left( - x \right) \right\} dx\]

\[\int\limits_3^5 \left( 2 - x \right) dx\]

\[\int\limits_0^4 \left( x + e^{2x} \right) dx\]

\[\int\limits_{- \pi/2}^{\pi/2} \sin^2 x\ dx .\]

\[\int\limits_{- \pi/2}^{\pi/2} \sin^3 x\ dx .\]

\[\int\limits_0^{\pi/4} \tan^2 x\ dx .\]

Evaluate each of the following integral:

\[\int_e^{e^2} \frac{1}{x\log x}dx\]

\[\int\limits_0^{15} \left[ x \right] dx .\]

\[\int\limits_0^1 \left\{ x \right\} dx,\] where {x} denotes the fractional part of x.  

 

\[\int\limits_0^\sqrt{2} \left[ x^2 \right] dx .\]

The value of the integral \[\int\limits_{- 2}^2 \left| 1 - x^2 \right| dx\] is ________ .


\[\int\limits_0^a \frac{\sqrt{x}}{\sqrt{x} + \sqrt{a - x}} dx\]


\[\int\limits_{- \pi/4}^{\pi/4} \left| \tan x \right| dx\]


\[\int\limits_0^{\pi/2} \frac{x \sin x \cos x}{\sin^4 x + \cos^4 x} dx\]


\[\int\limits_0^{\pi/2} \frac{\sin^2 x}{\sin x + \cos x} dx\]


\[\int\limits_0^1 \cot^{- 1} \left( 1 - x + x^2 \right) dx\]


Using second fundamental theorem, evaluate the following:

`int_(-1)^1 (2x + 3)/(x^2 + 3x + 7)  "d"x`


Evaluate the following using properties of definite integral:

`int_0^(i/2) (sin^7x)/(sin^7x + cos^7x)  "d"x`


Evaluate the following:

Γ(4)


Evaluate the following integrals as the limit of the sum:

`int_0^1 (x + 4)  "d"x`


Choose the correct alternative:

Γ(n) is


Given `int "e"^"x" (("x" - 1)/("x"^2)) "dx" = "e"^"x" "f"("x") + "c"`. Then f(x) satisfying the equation is:


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×