Advertisements
Advertisements
प्रश्न
उत्तर
We have,
\[ I = \int_0^a \frac{1}{x + \sqrt{a^2 - x^2}} d x\]
Putting \[x = a \sin \theta\]
\[ \Rightarrow dx = a \cos \theta d\theta\]
\[\text{When }x \to 0; \theta \to 0 \]
\[\text{And }x \to a; \theta \to \frac{\pi}{2}\]
\[ \therefore I = \int_0^\frac{\pi}{2} \frac{a \cos \theta}{a \sin \theta + \sqrt{a^2 - \left( a \sin \theta \right)^2}}d\theta\]
\[ = \int_0^\frac{\pi}{2} \frac{a \cos \theta}{a \sin \theta + a \cos \theta}d\theta\]
\[I = \int_0^\frac{\pi}{2} \frac{\cos \theta}{\sin \theta + \cos \theta}d\theta . . . . . \left( 1 \right)\]
\[ \Rightarrow I = \int_0^\frac{\pi}{2} \frac{\cos \left( \frac{\pi}{2} - \theta \right)}{\sin \left( \frac{\pi}{2} - \theta \right) + \cos \left( \frac{\pi}{2} - \theta \right)}d\theta\]
\[ = \int_0^\frac{\pi}{2} \frac{\sin \theta}{\cos \theta + \sin \theta}d\theta\]
\[I = \int_0^\frac{\pi}{2} \frac{\sin \theta}{\sin \theta + \cos \theta}d\theta . . . . . \left( 2 \right)\]
\[\text{By adding (1) and (2), we get}\]
\[2I = \int_0^\frac{\pi}{2} \frac{\cos \theta + \sin \theta}{\sin \theta + \cos \theta}d\theta \]
\[ \Rightarrow 2I = \int_0^\frac{\pi}{2} d\theta \]
\[ \Rightarrow 2I = \left[ \theta \right]_0^\frac{\pi}{2} \]
\[ \Rightarrow 2I = \frac{\pi}{2}\]
\[ \Rightarrow I = \frac{\pi}{4}\]
APPEARS IN
संबंधित प्रश्न
Prove that:
If \[\int\limits_0^a 3 x^2 dx = 8,\] write the value of a.
Write the coefficient a, b, c of which the value of the integral
`int_0^(2a)f(x)dx`
\[\int\limits_0^1 \cos^{- 1} x dx\]
\[\int\limits_0^\infty \frac{x}{\left( 1 + x \right)\left( 1 + x^2 \right)} dx\]
\[\int\limits_0^{\pi/2} \frac{1}{1 + \cot^7 x} dx\]
\[\int\limits_0^\pi \frac{x \sin x}{1 + \cos^2 x} dx\]
\[\int\limits_0^\pi \frac{x}{a^2 - \cos^2 x} dx, a > 1\]
\[\int\limits_{\pi/6}^{\pi/2} \frac{\ cosec x \cot x}{1 + {cosec}^2 x} dx\]
\[\int\limits_2^3 e^{- x} dx\]
\[\int\limits_0^2 \left( x^2 + 2 \right) dx\]
Evaluate the following:
`int_(-1)^1 "f"(x) "d"x` where f(x) = `{{:(x",", x ≥ 0),(-x",", x < 0):}`
Choose the correct alternative:
Γ(1) is
Evaluate `int (x^2 + x)/(x^4 - 9) "d"x`
Given `int "e"^"x" (("x" - 1)/("x"^2)) "dx" = "e"^"x" "f"("x") + "c"`. Then f(x) satisfying the equation is: