मराठी

2 ∫ 0 [ X ] D X . - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\limits_0^2 \left[ x \right] dx .\]
बेरीज

उत्तर

\[\text{We have}, \]
\[I = \int_0^2 \left[ x \right] d x\]
\[\text{We know that}, \]
\[\left[ x \right] = \begin{cases}0&,& 0 < x < 1\\1&,& 1 < x < 2\end{cases}\]
\[ \therefore I = \int_0^2 \left[ x \right] d x\]
\[ = \int_0^1 \left[ x \right] d x + \int_1^2 \left[ x \right] d x\]
\[ = \int_0^1 \left( 0 \right) d x + \int_1^2 \left( 1 \right) d x\]
\[ = 0 + \left[ x \right]_1^2 \]
\[ = 2 - 1 = 1\]

shaalaa.com
Definite Integrals
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 20: Definite Integrals - Very Short Answers [पृष्ठ ११६]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 20 Definite Integrals
Very Short Answers | Q 37 | पृष्ठ ११६

संबंधित प्रश्‍न

\[\int\limits_0^{\pi/2} x^2 \cos^2 x\ dx\]

\[\int\limits_0^1 \frac{2x + 3}{5 x^2 + 1} dx\]

\[\int\limits_0^a \sqrt{a^2 - x^2} dx\]

\[\int\limits_0^{\pi/4} \left( \sqrt{\tan}x + \sqrt{\cot}x \right) dx\]

\[\int\limits_0^{\pi/2} \sin 2x \tan^{- 1} \left( \sin x \right) dx\]

\[\int\limits_0^1 \left( \cos^{- 1} x \right)^2 dx\]

\[\int\limits_0^a x \sqrt{\frac{a^2 - x^2}{a^2 + x^2}} dx\]

\[\int\limits_0^9 f\left( x \right) dx, where f\left( x \right) \begin{cases}\sin x & , & 0 \leq x \leq \pi/2 \\ 1 & , & \pi/2 \leq x \leq 3 \\ e^{x - 3} & , & 3 \leq x \leq 9\end{cases}\]

\[\int_{- \frac{\pi}{2}}^\frac{\pi}{2} \left( 2\sin\left| x \right| + \cos\left| x \right| \right)dx\]

\[\int_0^{2\pi} \cos^{- 1} \left( \cos x \right)dx\]

Evaluate each of the following integral:

\[\int_a^b \frac{x^\frac{1}{n}}{x^\frac{1}{n} + \left( a + b - x \right)^\frac{1}{n}}dx, n \in N, n \geq 2\]


\[\int\limits_0^\pi \frac{x \sin x}{1 + \sin x} dx\]

\[\int\limits_1^3 \left( 2x + 3 \right) dx\]

\[\int\limits_2^3 x^2 dx\]

\[\int\limits_0^2 \left( x^2 - x \right) dx\]

\[\int\limits_0^\pi \cos^5 x\ dx .\]

\[\int\limits_0^1 \left\{ x \right\} dx,\] where {x} denotes the fractional part of x.  

 

\[\int\limits_0^1 e^\left\{ x \right\} dx .\]

\[\int\limits_0^2 x\left[ x \right] dx .\]

\[\int\limits_1^\sqrt{3} \frac{1}{1 + x^2} dx\]  is equal to ______.

\[\lim_{n \to \infty} \left\{ \frac{1}{2n + 1} + \frac{1}{2n + 2} + . . . + \frac{1}{2n + n} \right\}\] is equal to

\[\int\limits_0^{\pi/2} \sin\ 2x\ \log\ \tan x\ dx\]  is equal to 

\[\int\limits_0^\infty \log\left( x + \frac{1}{x} \right) \frac{1}{1 + x^2} dx =\] 

The value of \[\int\limits_{- \pi/2}^{\pi/2} \left( x^3 + x \cos x + \tan^5 x + 1 \right) dx, \] is 


\[\int\limits_0^1 \frac{1 - x}{1 + x} dx\]


\[\int\limits_0^1 \sqrt{\frac{1 - x}{1 + x}} dx\]


\[\int\limits_1^2 \frac{x + 3}{x\left( x + 2 \right)} dx\]


\[\int\limits_0^{\pi/4} \tan^4 x dx\]


\[\int\limits_1^3 \left| x^2 - 4 \right| dx\]


\[\int\limits_0^{\pi/2} \frac{x}{\sin^2 x + \cos^2 x} dx\]


\[\int\limits_0^1 \cot^{- 1} \left( 1 - x + x^2 \right) dx\]


\[\int\limits_{- 1}^1 e^{2x} dx\]


\[\int\limits_1^3 \left( 2 x^2 + 5x \right) dx\]


\[\int\limits_0^3 \left( x^2 + 1 \right) dx\]


Using second fundamental theorem, evaluate the following:

`int_(-1)^1 (2x + 3)/(x^2 + 3x + 7)  "d"x`


Evaluate the following:

`int_0^oo "e"^(-4x) x^4  "d"x`


Evaluate the following integrals as the limit of the sum:

`int_1^3 x  "d"x`


Choose the correct alternative:

If f(x) is a continuous function and a < c < b, then `int_"a"^"c" f(x)  "d"x + int_"c"^"b" f(x)  "d"x` is


Choose the correct alternative:

The value of `int_(- pi/2)^(pi/2) cos  x  "d"x` is


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×