Advertisements
Advertisements
प्रश्न
पर्याय
- \[\ln\left( \frac{1}{3} \right)\]
- \[\ln\left( \frac{2}{3} \right)\]
- \[\ln\left( \frac{3}{2} \right)\]
- \[\ln\left( \frac{4}{3} \right)\]
उत्तर
`ln(3/2)`
\[\lim_{n \to \infty} \left\{ \frac{1}{2n + 1} + \frac{1}{2n + 2} + . . . . . . . . . . + \frac{1}{2n + n} \right\}\]
\[ = \lim_{n \to \infty} \sum\nolimits_{r = 1}^n \frac{1}{2n + r}\]
\[ = {lim}_{n \to \infty} \frac{1}{n} \sum\nolimits_{r = 1}^n \frac{1}{2 + \frac{r}{n}}\]
\[let \frac{r}{n} = x\]
\[ = \int_0^\infty \frac{1}{2 + x} d x\]
\[ = \left[ \log\left( 2 + x \right) \right]_0^\infty \]
\[ = \log3 - \log2\]
\[ = log\frac{3}{2}\]
\[ = \ln\left( \frac{3}{2} \right)\]
APPEARS IN
संबंधित प्रश्न
Evaluate each of the following integral:
\[\int_a^b \frac{x^\frac{1}{n}}{x^\frac{1}{n} + \left( a + b - x \right)^\frac{1}{n}}dx, n \in N, n \geq 2\]
Evaluate the following integral:
Solve each of the following integral:
\[\int\limits_0^1 \left\{ x \right\} dx,\] where {x} denotes the fractional part of x.
`int_0^(2a)f(x)dx`
\[\int\limits_0^1 \frac{1 - x}{1 + x} dx\]
\[\int\limits_0^{\pi/4} \sin 2x \sin 3x dx\]
\[\int\limits_0^{\pi/4} e^x \sin x dx\]
\[\int\limits_1^3 \left| x^2 - 4 \right| dx\]
\[\int\limits_{- \pi/2}^{\pi/2} \sin^9 x dx\]
\[\int\limits_{- \pi}^\pi x^{10} \sin^7 x dx\]
\[\int\limits_0^\pi \frac{dx}{6 - \cos x}dx\]
\[\int\limits_0^{\pi/2} \frac{dx}{4 \cos x + 2 \sin x}dx\]
\[\int\limits_1^3 \left( 2 x^2 + 5x \right) dx\]
\[\int\limits_0^2 \left( x^2 + 2 \right) dx\]
Using second fundamental theorem, evaluate the following:
`int_(-1)^1 (2x + 3)/(x^2 + 3x + 7) "d"x`
Evaluate the following using properties of definite integral:
`int_(- pi/4)^(pi/4) x^3 cos^3 x "d"x`
Evaluate the following using properties of definite integral:
`int_0^1 log (1/x - 1) "d"x`
Evaluate the following integrals as the limit of the sum:
`int_1^3 (2x + 3) "d"x`
Evaluate: `int_(-1)^2 |x^3 - 3x^2 + 2x|dx`