Advertisements
Advertisements
प्रश्न
Evaluate the following using properties of definite integral:
`int_0^1 log (1/x - 1) "d"x`
बेरीज
उत्तर
Let I = `int_0^1 log (1/x - 1) "d"x`
I = `int_0^1 log ((1 - x)/x) "d"x` ........(1)
Using the property
`int_0^"a" "f"(x) "d"x = int_0^"a" "f"("a" -x) "d"x`
I = `int_0^1 log (1/(1 - x) - 1) "d"x`
= `int_0^1 log((1 - (1 - x))/(1 - x)) "d"x`
= `int_0^1 log(x/(1 - x)) "d"x`
Adding (1) and (2)
I + I = `int_0^1 log((1 - x)/x) "d"x + int_0^1 log (x/(1 - x )) "d"x`
2I = `int_0^1 log [((1 - x))/x xx x/((1 - x))] "d"x`
2I = `int_0^1 log(1) "d"x` = 0
∴ I = 0
shaalaa.com
Definite Integrals
या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
APPEARS IN
संबंधित प्रश्न
\[\int\limits_0^{\pi/2} \sqrt{1 + \cos x}\ dx\]
\[\int\limits_1^2 \frac{x + 3}{x \left( x + 2 \right)} dx\]
\[\int_0^\frac{\pi}{2} \sqrt{\cos x - \cos^3 x}\left( \sec^2 x - 1 \right) \cos^2 xdx\]
\[\int\limits_0^5 \frac{\sqrt[4]{x + 4}}{\sqrt[4]{x + 4} + \sqrt[4]{9 - x}} dx\]
\[\int\limits_0^{\pi/2} \frac{\sin^{3/2} x}{\sin^{3/2} x + \cos^{3/2} x} dx\]
\[\int\limits_0^\infty \frac{x}{\left( 1 + x \right)\left( 1 + x^2 \right)} dx\]
\[\int\limits_1^3 \left( 3x - 2 \right) dx\]
\[\int\limits_1^4 \left( x^2 - x \right) dx\]
Using second fundamental theorem, evaluate the following:
`int_0^(pi/2) sqrt(1 + cos x) "d"x`
Evaluate: `int_(-1)^2 |x^3 - 3x^2 + 2x|dx`