मराठी

2 ∫ 1 X + 3 X ( X + 2 ) D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\limits_1^2 \frac{x + 3}{x \left( x + 2 \right)} dx\]

उत्तर

\[Let\ I = \int_1^2 \frac{x + 3}{x\left( x + 2 \right)} d x . Then, \]
\[I = \int_1^2 \left( \frac{x}{x\left( x + 2 \right)} + \frac{3}{x\left( x + 2 \right)} \right) d x\]
\[ \Rightarrow I = \int_1^2 \frac{dx}{\left( x + 2 \right)} + \int_1^2 \frac{3}{x\left( x + 2 \right)} d x\]
\[ \Rightarrow I = \left[ \log \left( x + 2 \right) \right]_1^2 + \frac{3}{2} \int_1^2 \left( \frac{1}{x} - \frac{1}{x + 2} \right) dx\]
\[ \Rightarrow I = \left[ \log \left( x + 2 \right) \right]_1^2 + \frac{3}{2} \left[ \log x - \log \left( x + 2 \right) \right]_1^2 \]
\[ \Rightarrow I = \log 4 - \log 3 + \frac{3}{2}\left[ \log 2 - \log 4 - 0 + \log 3 \right]\]
\[ \Rightarrow I = \log 4 - \log 3 + \frac{3}{2}\left[ - \log 2 + \log 3 \right]\]
\[ \Rightarrow I = 2 \log 2 - \log 3 + \frac{3}{2} \log 3 - \frac{3}{2} \log 2\]
\[ \Rightarrow I = \frac{1}{2} \log 2 + \frac{1}{2} \log 3\]
\[ \Rightarrow I = \frac{1}{2}\left( \log 2 + \log 3 \right)\]
\[ \Rightarrow I = \frac{1}{2} \log 6\]
shaalaa.com
Definite Integrals
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 20: Definite Integrals - Exercise 20.1 [पृष्ठ १७]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 20 Definite Integrals
Exercise 20.1 | Q 37 | पृष्ठ १७

संबंधित प्रश्‍न

\[\int\limits_0^{\pi/2} \cos^2 x\ dx\]

\[\int\limits_{\pi/3}^{\pi/4} \left( \tan x + \cot x \right)^2 dx\]

\[\int\limits_0^{\pi/2} \left( a^2 \cos^2 x + b^2 \sin^2 x \right) dx\]

\[\int\limits_0^{\pi/2} x \cos\ x\ dx\]

\[\int\limits_0^{\pi/4} x^2 \sin\ x\ dx\]

\[\int\limits_1^2 \log\ x\ dx\]

\[\int\limits_0^1 x \left( 1 - x \right)^5 dx\]

\[\int\limits_0^1 \frac{e^x}{1 + e^{2x}} dx\]

\[\int\limits_0^1 x \tan^{- 1} x\ dx\]

\[\int\limits_0^1 \sqrt{\frac{1 - x}{1 + x}} dx\]

\[\int\limits_0^{\pi/2} \sin 2x \tan^{- 1} \left( \sin x \right) dx\]

\[\int\limits_0^a \sin^{- 1} \sqrt{\frac{x}{a + x}} dx\]

\[\int_0^\frac{\pi}{2} \sqrt{\cos x - \cos^3 x}\left( \sec^2 x - 1 \right) \cos^2 xdx\]

Evaluate the following integral:

\[\int\limits_{- 3}^3 \left| x + 1 \right| dx\]

If f(x) is a continuous function defined on [−aa], then prove that 

\[\int\limits_{- a}^a f\left( x \right) dx = \int\limits_0^a \left\{ f\left( x \right) + f\left( - x \right) \right\} dx\]

\[\int\limits_0^2 \left( x + 3 \right) dx\]

\[\int\limits_0^{\pi/2} \frac{\sin^n x}{\sin^n x + \cos^n x} dx, n \in N .\]

\[\int\limits_0^\pi \cos^5 x\ dx .\]

Evaluate each of the following integral:

\[\int_0^\frac{\pi}{2} e^x \left( \sin x - \cos x \right)dx\]

 


\[\int\limits_0^1 \sqrt{x \left( 1 - x \right)} dx\] equals

The value of the integral \[\int\limits_0^{\pi/2} \frac{\sqrt{\cos x}}{\sqrt{\cos x} + \sqrt{\sin x}} dx\]  is 


\[\int\limits_0^{\pi/2} \frac{1}{2 + \cos x} dx\] equals


\[\int\limits_1^e \log x\ dx =\]

If \[\int\limits_0^1 f\left( x \right) dx = 1, \int\limits_0^1 xf\left( x \right) dx = a, \int\limits_0^1 x^2 f\left( x \right) dx = a^2 , then \int\limits_0^1 \left( a - x \right)^2 f\left( x \right) dx\] equals


\[\int\limits_{\pi/6}^{\pi/3} \frac{1}{\sin 2x} dx\]  is equal to

If \[I_{10} = \int\limits_0^{\pi/2} x^{10} \sin x\ dx,\]  then the value of I10 + 90I8 is

 


\[\int\limits_0^1 \frac{x}{\left( 1 - x \right)^\frac{5}{4}} dx =\]

The value of the integral \[\int\limits_{- 2}^2 \left| 1 - x^2 \right| dx\] is ________ .


\[\int\limits_0^{\pi/2} \frac{\sin x}{\sin x + \cos x} dx\]  equals to

\[\int\limits_0^{\pi/2} \frac{\sin^2 x}{\left( 1 + \cos x \right)^2} dx\]


Evaluate the following integrals :-

\[\int_2^4 \frac{x^2 + x}{\sqrt{2x + 1}}dx\]


\[\int\limits_0^1 \left| \sin 2\pi x \right| dx\]


\[\int\limits_{- \pi/4}^{\pi/4} \left| \tan x \right| dx\]


Using second fundamental theorem, evaluate the following:

`int_1^2 (x "d"x)/(x^2 + 1)`


Using second fundamental theorem, evaluate the following:

`int_1^2 (x - 1)/x^2  "d"x`


Evaluate the following using properties of definite integral:

`int_(-1)^1 log ((2 - x)/(2 + x))  "d"x`


Evaluate the following:

`Γ (9/2)`


Evaluate the following integrals as the limit of the sum:

`int_1^3 x  "d"x`


Choose the correct alternative:

`int_0^oo "e"^(-2x)  "d"x` is


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×