Advertisements
Advertisements
प्रश्न
उत्तर
\[I = \int_1^2 \left( \frac{x}{x\left( x + 2 \right)} + \frac{3}{x\left( x + 2 \right)} \right) d x\]
\[ \Rightarrow I = \int_1^2 \frac{dx}{\left( x + 2 \right)} + \int_1^2 \frac{3}{x\left( x + 2 \right)} d x\]
\[ \Rightarrow I = \left[ \log \left( x + 2 \right) \right]_1^2 + \frac{3}{2} \int_1^2 \left( \frac{1}{x} - \frac{1}{x + 2} \right) dx\]
\[ \Rightarrow I = \left[ \log \left( x + 2 \right) \right]_1^2 + \frac{3}{2} \left[ \log x - \log \left( x + 2 \right) \right]_1^2 \]
\[ \Rightarrow I = \log 4 - \log 3 + \frac{3}{2}\left[ \log 2 - \log 4 - 0 + \log 3 \right]\]
\[ \Rightarrow I = \log 4 - \log 3 + \frac{3}{2}\left[ - \log 2 + \log 3 \right]\]
\[ \Rightarrow I = 2 \log 2 - \log 3 + \frac{3}{2} \log 3 - \frac{3}{2} \log 2\]
\[ \Rightarrow I = \frac{1}{2} \log 2 + \frac{1}{2} \log 3\]
\[ \Rightarrow I = \frac{1}{2}\left( \log 2 + \log 3 \right)\]
\[ \Rightarrow I = \frac{1}{2} \log 6\]
APPEARS IN
संबंधित प्रश्न
Evaluate the following integral:
If f(x) is a continuous function defined on [−a, a], then prove that
Evaluate each of the following integral:
The value of the integral \[\int\limits_0^{\pi/2} \frac{\sqrt{\cos x}}{\sqrt{\cos x} + \sqrt{\sin x}} dx\] is
\[\int\limits_0^{\pi/2} \frac{1}{2 + \cos x} dx\] equals
If \[\int\limits_0^1 f\left( x \right) dx = 1, \int\limits_0^1 xf\left( x \right) dx = a, \int\limits_0^1 x^2 f\left( x \right) dx = a^2 , then \int\limits_0^1 \left( a - x \right)^2 f\left( x \right) dx\] equals
If \[I_{10} = \int\limits_0^{\pi/2} x^{10} \sin x\ dx,\] then the value of I10 + 90I8 is
The value of the integral \[\int\limits_{- 2}^2 \left| 1 - x^2 \right| dx\] is ________ .
\[\int\limits_0^{\pi/2} \frac{\sin^2 x}{\left( 1 + \cos x \right)^2} dx\]
Evaluate the following integrals :-
\[\int_2^4 \frac{x^2 + x}{\sqrt{2x + 1}}dx\]
\[\int\limits_0^1 \left| \sin 2\pi x \right| dx\]
\[\int\limits_{- \pi/4}^{\pi/4} \left| \tan x \right| dx\]
Using second fundamental theorem, evaluate the following:
`int_1^2 (x "d"x)/(x^2 + 1)`
Using second fundamental theorem, evaluate the following:
`int_1^2 (x - 1)/x^2 "d"x`
Evaluate the following using properties of definite integral:
`int_(-1)^1 log ((2 - x)/(2 + x)) "d"x`
Evaluate the following:
`Γ (9/2)`
Evaluate the following integrals as the limit of the sum:
`int_1^3 x "d"x`
Choose the correct alternative:
`int_0^oo "e"^(-2x) "d"x` is