Advertisements
Advertisements
प्रश्न
Evaluate the following integrals :-
\[\int_2^4 \frac{x^2 + x}{\sqrt{2x + 1}}dx\]
उत्तर
Let \[I=\int_2^4 \frac{x^2 + x}{\sqrt{2x + 1}}dx\]
Put 2x + 1 = z2
\[\Rightarrow 2dx = 2zdz\]
\[ \Rightarrow dx = zdz\]
When
\[x \to 2, z \to \sqrt{5}\]
When
\[x \to 4, z \to 3\]
\[\therefore I = \int_\sqrt{5}^3 \frac{\left( \frac{z^2 - 1}{2} \right)^2 + \frac{z^2 - 1}{2}}{z} \times zdz\]
\[ \Rightarrow I = \int_\sqrt{5}^3 \frac{z^4 - 2 z^2 + 1 + 2 z^2 - 2}{4}dz\]
\[ \Rightarrow I = \frac{1}{4} \int_\sqrt{5}^3 \left( z^4 - 1 \right)dz\]
\[ \Rightarrow I = \left.\frac{1}{4} \times \left( \frac{z^5}{5} - z \right)\right|_\sqrt{5}^3\]
\[\Rightarrow I = \frac{1}{4}\left[ \left( \frac{243}{5} - 3 \right) - \left( \frac{25\sqrt{5}}{5} - \sqrt{5} \right) \right]\]
\[ \Rightarrow I = \frac{1}{4} \times \frac{228}{5} - \frac{1}{4} \times 4\sqrt{5}\]
\[ \Rightarrow I = \frac{57}{5} - \sqrt{5}\]
APPEARS IN
संबंधित प्रश्न
If f (x) is a continuous function defined on [0, 2a]. Then, prove that
If \[\int_0^a \frac{1}{4 + x^2}dx = \frac{\pi}{8}\] , find the value of a.
The value of the integral \[\int\limits_0^\infty \frac{x}{\left( 1 + x \right)\left( 1 + x^2 \right)} dx\]
The value of \[\int\limits_0^\pi \frac{1}{5 + 3 \cos x} dx\] is
Evaluate : \[\int e^{2x} \cdot \sin \left( 3x + 1 \right) dx\] .
\[\int\limits_0^{\pi/4} \cos^4 x \sin^3 x dx\]
\[\int\limits_0^1 x \left( \tan^{- 1} x \right)^2 dx\]
\[\int\limits_0^1 \left| 2x - 1 \right| dx\]
\[\int\limits_1^3 \left| x^2 - 4 \right| dx\]
\[\int\limits_{- \pi/2}^{\pi/2} \sin^9 x dx\]
\[\int\limits_0^{\pi/2} \frac{\cos^2 x}{\sin x + \cos x} dx\]
Prove that `int_a^b ƒ ("x") d"x" = int_a^bƒ(a + b - "x") d"x" and "hence evaluate" int_(π/6)^(π/3) (d"x")/(1+sqrt(tan "x")`
Using second fundamental theorem, evaluate the following:
`int_1^"e" ("d"x)/(x(1 + logx)^3`
Evaluate the following:
`int_1^4` f(x) dx where f(x) = `{{:(4x + 3",", 1 ≤ x ≤ 2),(3x + 5",", 2 < x ≤ 4):}`
Evaluate the following:
`int_(-1)^1 "f"(x) "d"x` where f(x) = `{{:(x",", x ≥ 0),(-x",", x < 0):}`
If f(x) = `{{:(x^2"e"^(-2x)",", x ≥ 0),(0",", "otherwise"):}`, then evaluate `int_0^oo "f"(x) "d"x`
Choose the correct alternative:
If n > 0, then Γ(n) is
Evaluate `int "dx"/sqrt((x - alpha)(beta - x)), beta > alpha`
Evaluate `int (x^2 + x)/(x^4 - 9) "d"x`
The value of `int_2^3 x/(x^2 + 1)`dx is ______.