Advertisements
Advertisements
Question
Evaluate the following integrals :-
\[\int_2^4 \frac{x^2 + x}{\sqrt{2x + 1}}dx\]
Solution
Let \[I=\int_2^4 \frac{x^2 + x}{\sqrt{2x + 1}}dx\]
Put 2x + 1 = z2
\[\Rightarrow 2dx = 2zdz\]
\[ \Rightarrow dx = zdz\]
When
\[x \to 2, z \to \sqrt{5}\]
When
\[x \to 4, z \to 3\]
\[\therefore I = \int_\sqrt{5}^3 \frac{\left( \frac{z^2 - 1}{2} \right)^2 + \frac{z^2 - 1}{2}}{z} \times zdz\]
\[ \Rightarrow I = \int_\sqrt{5}^3 \frac{z^4 - 2 z^2 + 1 + 2 z^2 - 2}{4}dz\]
\[ \Rightarrow I = \frac{1}{4} \int_\sqrt{5}^3 \left( z^4 - 1 \right)dz\]
\[ \Rightarrow I = \left.\frac{1}{4} \times \left( \frac{z^5}{5} - z \right)\right|_\sqrt{5}^3\]
\[\Rightarrow I = \frac{1}{4}\left[ \left( \frac{243}{5} - 3 \right) - \left( \frac{25\sqrt{5}}{5} - \sqrt{5} \right) \right]\]
\[ \Rightarrow I = \frac{1}{4} \times \frac{228}{5} - \frac{1}{4} \times 4\sqrt{5}\]
\[ \Rightarrow I = \frac{57}{5} - \sqrt{5}\]
APPEARS IN
RELATED QUESTIONS
Evaluate each of the following integral:
If \[\int\limits_0^1 \left( 3 x^2 + 2x + k \right) dx = 0,\] find the value of k.
\[\int\limits_0^\pi \frac{1}{1 + \sin x} dx\] equals
The value of \[\int\limits_0^\pi \frac{x \tan x}{\sec x + \cos x} dx\] is __________ .
If \[\int\limits_0^a \frac{1}{1 + 4 x^2} dx = \frac{\pi}{8},\] then a equals
The value of \[\int\limits_{- \pi}^\pi \sin^3 x \cos^2 x\ dx\] is
\[\int\limits_0^{\pi/2} \frac{\cos x}{1 + \sin^2 x} dx\]
\[\int\limits_0^4 x dx\]
\[\int\limits_0^2 \left( 2 x^2 + 3 \right) dx\]
\[\int\limits_1^3 \left( x^2 + 3x \right) dx\]
\[\int\limits_0^3 \left( x^2 + 1 \right) dx\]
Evaluate the following using properties of definite integral:
`int_(- pi/4)^(pi/4) x^3 cos^3 x "d"x`
Evaluate the following:
`Γ (9/2)`
Evaluate the following:
`int_0^oo "e"^(- x/2) x^5 "d"x`
Evaluate the following integrals as the limit of the sum:
`int_0^1 x^2 "d"x`
Choose the correct alternative:
If n > 0, then Γ(n) is
Find `int x^2/(x^4 + 3x^2 + 2) "d"x`
If `int (3"e"^x - 5"e"^-x)/(4"e"6x + 5"e"^-x)"d"x` = ax + b log |4ex + 5e –x| + C, then ______.