English

1 ∫ − 1 5 X 4 √ X 5 + 1 D X - Mathematics

Advertisements
Advertisements

Question

\[\int\limits_{- 1}^1 5 x^4 \sqrt{x^5 + 1} dx\]

Solution

\[Let\ I = \int_{- 1}^1 5 x^4 \sqrt{x^5 + 1}\ d\ x . Then, \]
\[Let\ x^5 + 1 = t . Then, 5 x^4\ dx = dt\]
\[When\ x = - 1, t = 0\ and\ x = 1, t = 2\]
\[ \therefore I = \int_0^2 \sqrt{t}\ dt\]
\[ \Rightarrow I = \left[ \frac{2}{3} t^\frac{3}{2} \right]_0^2 \]
\[ \Rightarrow I = \frac{2}{3}\sqrt{8}\]
\[ \Rightarrow I = \frac{4\sqrt{2}}{3}\]

shaalaa.com
Definite Integrals
  Is there an error in this question or solution?
Chapter 20: Definite Integrals - Exercise 20.2 [Page 39]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 20 Definite Integrals
Exercise 20.2 | Q 39 | Page 39

RELATED QUESTIONS

\[\int\limits_0^{\pi/6} \cos x \cos 2x\ dx\]

\[\int\limits_{\pi/3}^{\pi/4} \left( \tan x + \cot x \right)^2 dx\]

\[\int\limits_0^{\pi/2} \left( a^2 \cos^2 x + b^2 \sin^2 x \right) dx\]

\[\int\limits_0^{\pi/2} \sqrt{1 + \sin x}\ dx\]

\[\int\limits_1^e \frac{e^x}{x} \left( 1 + x \log x \right) dx\]

\[\int\limits_e^{e^2} \left\{ \frac{1}{\log x} - \frac{1}{\left( \log x \right)^2} \right\} dx\]

\[\int\limits_1^2 \frac{x + 3}{x \left( x + 2 \right)} dx\]

\[\int\limits_0^2 \frac{1}{4 + x - x^2} dx\]

\[\int\limits_1^4 \frac{x^2 + x}{\sqrt{2x + 1}} dx\]

\[\int\limits_{\pi/2}^\pi e^x \left( \frac{1 - \sin x}{1 - \cos x} \right) dx\]

\[\int\limits_0^{2\pi} e^{x/2} \sin\left( \frac{x}{2} + \frac{\pi}{4} \right) dx\]

\[\int\limits_1^2 \frac{x}{\left( x + 1 \right) \left( x + 2 \right)} dx\]

\[\int_0^\frac{\pi}{4} \left( a^2 \cos^2 x + b^2 \sin^2 x \right)dx\]

\[\int_{- \frac{\pi}{2}}^\frac{\pi}{2} \left( 2\sin\left| x \right| + \cos\left| x \right| \right)dx\]

\[\int\limits_0^{\pi/2} \frac{1}{1 + \sqrt{\tan x}} dx\]

\[\int\limits_0^\pi \frac{x \sin x}{1 + \sin x} dx\]

\[\int\limits_0^1 \log\left( \frac{1}{x} - 1 \right) dx\]

 


\[\int\limits_0^2 e^x dx\]

\[\int\limits_0^{\pi/2} \cos^2 x\ dx .\]

\[\int\limits_{- \pi/2}^{\pi/2} \sin^2 x\ dx .\]

If \[\int\limits_0^1 \left( 3 x^2 + 2x + k \right) dx = 0,\] find the value of k.

 


If \[\int\limits_0^a 3 x^2 dx = 8,\] write the value of a.

 

 


\[\int\limits_0^{15} \left[ x \right] dx .\]

\[\int\limits_0^1 \left\{ x \right\} dx,\] where {x} denotes the fractional part of x.  

 

\[\int\limits_0^\pi \frac{1}{1 + \sin x} dx\] equals


Evaluate : \[\int\limits_0^{2\pi} \cos^5 x dx\] .


Evaluate: \[\int\limits_{- \pi/2}^{\pi/2} \frac{\cos x}{1 + e^x}dx\] .

 

\[\int\limits_1^2 x\sqrt{3x - 2} dx\]


\[\int\limits_0^1 \tan^{- 1} \left( \frac{2x}{1 - x^2} \right) dx\]


\[\int\limits_{- a}^a \frac{x e^{x^2}}{1 + x^2} dx\]


\[\int\limits_0^{\pi/2} \frac{1}{1 + \tan^3 x} dx\]


\[\int\limits_0^\pi x \sin x \cos^4 x dx\]


\[\int\limits_0^\pi \frac{x \tan x}{\sec x + \tan x} dx\]


\[\int\limits_0^3 \left( x^2 + 1 \right) dx\]


Using second fundamental theorem, evaluate the following:

`int_0^1 "e"^(2x)  "d"x`


Using second fundamental theorem, evaluate the following:

`int_0^1 x"e"^(x^2)  "d"x`


Evaluate the following:

`int_1^4` f(x) dx where f(x) = `{{:(4x + 3",", 1 ≤ x ≤ 2),(3x + 5",", 2 < x ≤ 4):}`


Evaluate the following integrals as the limit of the sum:

`int_0^1 x^2  "d"x`


Choose the correct alternative:

`int_0^oo x^4"e"^-x  "d"x` is


Evaluate `int sqrt((1 + x)/(1 - x)) "d"x`, x ≠1


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×