Advertisements
Advertisements
Question
Solution
\[Let\ I = \int_{- 1}^1 5 x^4 \sqrt{x^5 + 1}\ d\ x . Then, \]
\[Let\ x^5 + 1 = t . Then, 5 x^4\ dx = dt\]
\[When\ x = - 1, t = 0\ and\ x = 1, t = 2\]
\[ \therefore I = \int_0^2 \sqrt{t}\ dt\]
\[ \Rightarrow I = \left[ \frac{2}{3} t^\frac{3}{2} \right]_0^2 \]
\[ \Rightarrow I = \frac{2}{3}\sqrt{8}\]
\[ \Rightarrow I = \frac{4\sqrt{2}}{3}\]
APPEARS IN
RELATED QUESTIONS
If \[\int\limits_0^1 \left( 3 x^2 + 2x + k \right) dx = 0,\] find the value of k.
If \[\int\limits_0^a 3 x^2 dx = 8,\] write the value of a.
\[\int\limits_0^1 \left\{ x \right\} dx,\] where {x} denotes the fractional part of x.
\[\int\limits_0^\pi \frac{1}{1 + \sin x} dx\] equals
Evaluate : \[\int\limits_0^{2\pi} \cos^5 x dx\] .
Evaluate: \[\int\limits_{- \pi/2}^{\pi/2} \frac{\cos x}{1 + e^x}dx\] .
\[\int\limits_1^2 x\sqrt{3x - 2} dx\]
\[\int\limits_0^1 \tan^{- 1} \left( \frac{2x}{1 - x^2} \right) dx\]
\[\int\limits_{- a}^a \frac{x e^{x^2}}{1 + x^2} dx\]
\[\int\limits_0^{\pi/2} \frac{1}{1 + \tan^3 x} dx\]
\[\int\limits_0^\pi x \sin x \cos^4 x dx\]
\[\int\limits_0^\pi \frac{x \tan x}{\sec x + \tan x} dx\]
\[\int\limits_0^3 \left( x^2 + 1 \right) dx\]
Using second fundamental theorem, evaluate the following:
`int_0^1 "e"^(2x) "d"x`
Using second fundamental theorem, evaluate the following:
`int_0^1 x"e"^(x^2) "d"x`
Evaluate the following:
`int_1^4` f(x) dx where f(x) = `{{:(4x + 3",", 1 ≤ x ≤ 2),(3x + 5",", 2 < x ≤ 4):}`
Evaluate the following integrals as the limit of the sum:
`int_0^1 x^2 "d"x`
Choose the correct alternative:
`int_0^oo x^4"e"^-x "d"x` is
Evaluate `int sqrt((1 + x)/(1 - x)) "d"x`, x ≠1