Advertisements
Advertisements
Question
Solution
\[\text{Let }\ I = \int_\frac{\pi}{2}^\pi e^x \left( \frac{1 - \sin x}{1 - \cos x} \right) d x . Then, \]
\[I = \int_\frac{\pi}{2}^\pi e^x \left( \frac{1 - 2 \sin \frac{x}{2} \cos \frac{x}{2}}{2 \sin^2 \frac{x}{2}} \right) dx .................\left[ As, \sin A = 2 \sin \frac{A}{2} \cos \frac{A}{2}, \cos A = 1 - 2 \sin^2 \frac{A}{2} \right]\]
\[ \Rightarrow I = \int_\frac{\pi}{2}^\pi e^x \left( \frac{1}{2} {cosec}^2 \frac{x}{2} - \cot \frac{x}{2} \right) dx\]
\[ \Rightarrow I = \int_\frac{\pi}{2}^\pi \frac{1}{2} e^x {cosec}^2 \frac{x}{2} dx - \int_\frac{\pi}{2}^\pi e^x \cot \frac{x}{2} dx\]
\[\text{Integrating second term by parts}\]
\[I = \left\{ - \left[ e^x \cot \frac{x}{2} \right]_\frac{\pi}{2}^\pi - \int_\frac{\pi}{2}^\pi \frac{1}{2} e^x {cosec}^2 \frac{x}{2} dx \right\} + \int_\frac{\pi}{2}^\pi \frac{1}{2} e^x {cosec}^2 \frac{x}{2} dx\]
\[ \Rightarrow I = - \left[ 0 - e^\frac{\pi}{2} \right]\]
\[ \Rightarrow I = e^\frac{\pi}{2} \]
APPEARS IN
RELATED QUESTIONS
Evaluate the following integral:
If \[f\left( a + b - x \right) = f\left( x \right)\] , then prove that \[\int_a^b xf\left( x \right)dx = \frac{a + b}{2} \int_a^b f\left( x \right)dx\]
If f(2a − x) = −f(x), prove that
Evaluate each of the following integral:
If \[\int\limits_0^1 \left( 3 x^2 + 2x + k \right) dx = 0,\] find the value of k.
`int_0^1 sqrt((1 - "x")/(1 + "x")) "dx"`
The value of \[\int\limits_0^1 \tan^{- 1} \left( \frac{2x - 1}{1 + x - x^2} \right) dx,\] is
\[\int\limits_0^{\pi/4} e^x \sin x dx\]
\[\int\limits_0^{\pi/2} \left| \sin x - \cos x \right| dx\]
\[\int\limits_{- \pi/2}^{\pi/2} \sin^9 x dx\]
\[\int\limits_{- a}^a \frac{x e^{x^2}}{1 + x^2} dx\]
\[\int\limits_2^3 \frac{\sqrt{x}}{\sqrt{5 - x} + \sqrt{x}} dx\]
\[\int\limits_0^{\pi/2} \frac{dx}{4 \cos x + 2 \sin x}dx\]
Evaluate the following:
`int_(-1)^1 "f"(x) "d"x` where f(x) = `{{:(x",", x ≥ 0),(-x",", x < 0):}`
Choose the correct alternative:
`int_0^oo "e"^(-2x) "d"x` is
Choose the correct alternative:
`int_(-1)^1 x^3 "e"^(x^4) "d"x` is
Integrate `((2"a")/sqrt(x) - "b"/x^2 + 3"c"root(3)(x^2))` w.r.t. x